Astronomers discover sunscreen snow falling on hot exoplanet

October 26, 2017, Pennsylvania State University
Artist's illustration shows the gas giant planet Kepler-13Ab as compared in size to several planets in our solar system. The behemoth exoplanet is six times more massive than Jupiter. Kepler-13Ab is also one of the hottest known planets, with a dayside temperature of nearly 5,000 degrees Fahrenheit. It orbits very close to the star Kepler-13A, which is 1,730 light-years from Earth. Credit: NASA, ESA, and A. Feild (STScI)

Astronomers at Penn State have used the Hubble Space Telescope to find a blistering-hot giant planet outside our solar system where the atmosphere "snows" titanium oxide. These Hubble observations are the first detections of this "snow-out" process, called a "cold trap," on an exoplanet. This discovery, and other observations made by the Penn State team, provide insight into the complexity of weather and atmospheric composition on exoplanets, and may someday be useful for gauging the habitability of Earth-size planets.

"In many ways, the we're doing now on these gaseous 'hot Jupiter' kinds of planets are test beds for how we're going to do atmospheric studies of terrestrial, Earth-like planets," said Thomas Beatty, assistant research professor of astronomy at Penn State and the lead author of the study. "Understanding more about the atmospheres of these planets and how they work will help us when we study smaller planets that are harder to see and have more complicated features in their atmospheres." The team's results are published in October 2017 issue of The Astronomical Journal.

Beatty's team targeted planet Kepler-13Ab because it is one of the hottest of the known exoplanets. Its dayside temperature is nearly 5,000 degrees Fahrenheit. Kepler-13Ab is so close to its parent star that it is tidally locked, so one side always faces the star while the other side is in permanent darkness. The team discovered that the sunscreen snowfall happens only on the planet's permanent nighttime side. Any visitors to this exoplanet would need to bottle up some of that sunscreen, because they won't find it on the sizzling-hot daytime side.

The astronomers didn't go looking for titanium oxide specifically. Instead, their studies revealed that this giant planet's is cooler at higher altitudes—which was surprising because it is the opposite of what happens on other hot Jupiters. Titanium oxide in the atmospheres of other hot Jupiters absorbs light and reradiates it as heat, making the atmosphere grow warmer at higher altitudes. Even at their much colder temperatures, most of our solar system's gas giants also have warmer temperatures at higher altitudes.

Intrigued by this surprising discovery, researchers concluded that the light-absorbing gaseous form of titanium oxide has been removed from the dayside of planet Kepler-13Ab's atmosphere. Without the titanium oxide gas to absorb incoming starlight on the daytime side, the atmospheric temperature there grows colder with increasing altitude.

Astronomers discover sunscreen snow falling on hot exoplanet
This illustration shows the seething hot planet Kepler-13Ab that circles very close to its host star, Kepler-13A. In the background is the star's binary companion, Kepler-13B, and the third member of the multiple-star system is the orange dwarf star Kepler-13C. Credit: NASA, ESA, and G. Bacon (STScI)

The astronomers suggest that powerful winds on Kepler-13Ab carry the titanium oxide gas around, condensing it into crystalline flakes that form clouds. Kepler-13Ab's strong surface gravity—six times greater than Jupiter's—then pulls the titanium oxide snow out of the upper atmosphere and traps it in the lower atmosphere on the nighttime side of the planet.

"Understanding what sets the climates of other worlds has been one of the big puzzles of the last decade," said Jason Wright, associate professor of astronomy at Penn State, and one of the study's co-authors. "Seeing this cold-trap process in action provides us with a long sought and important piece of that puzzle."

The team's observations confirm a theory from several years ago that this kind of precipitation could occur on massive, hot planets with powerful gravity. "Presumably, this precipitation process is happening on most of the observed hot Jupiters, but those all have lower surface gravities than Kepler-13Ab," Beatty explained. "The snow doesn't fall far enough in those atmospheres, and then it gets swept back to the hotter dayside, revaporizes, and returns to a gaseous state."

The researchers used Hubble's Wide Field Camera 3 to conduct spectroscopic observations of the exoplanet's atmosphere in near-infrared light. Hubble made the observations as the distant world traveled behind its star, a transit event called a secondary eclipse. This type of transit yields information on the temperature of the components of the atmosphere on the exoplanet's dayside.

"These observations of Kepler-13Ab are telling us how condensates and clouds form in the atmospheres of very hot Jupiters, and how gravity will affect the composition of an atmosphere," Beatty explained. "When looking at these planets, you need to know not only how hot they are, but also what their gravity is like."

Explore further: VLT makes first detection of titanium oxide in an exoplanet

More information: Thomas G. Beatty et al, Evidence for Atmospheric Cold-trap Processes in the Noninverted Emission Spectrum of Kepler-13Ab Using HST/WFC3, The Astronomical Journal (2017). DOI: 10.3847/1538-3881/aa899b

Related Stories

VLT makes first detection of titanium oxide in an exoplanet

September 13, 2017

A team of astronomers led by Elyar Sedaghati, an ESO fellow and recent graduate of TU Berlin, has examined the atmosphere of the exoplanet [WASP-19b] in greater detail than ever before. This remarkable planet has about the ...

Size matters in the detection of exoplanet atmospheres

September 19, 2017

A group analysis of 30 exoplanets orbiting distant stars suggests that size, not mass, is a key factor in whether a planet's atmosphere can be detected. The largest population-study of exoplanets to date successfully detected ...

Cloudy nights, sunny days on distant hot Jupiters

October 18, 2016

The weather forecast for faraway, blistering planets called "hot Jupiters" might go something like this: Cloudy nights and sunny days, with a high of 2,400 degrees Fahrenheit (about 1,300 degrees Celsius, or 1,600 Kelvin).

Hubble captures blistering pitch-black planet

September 14, 2017

Astronomers have discovered that the well-studied exoplanet WASP-12b reflects almost no light, making it appear essentially pitch black. This discovery sheds new light on the atmospheric composition of the planet and also ...

Recommended for you

InSight lander 'hears' Martian winds

December 7, 2018

NASA's Interior Exploration using Seismic Investigations, Geodesy and Heat Transport InSight lander, which touched down on Mars just 10 days ago, has provided the first ever "sounds" of Martian winds on the Red Planet. A ...

An exoplanet loses its atmosphere in the form of a tail

December 6, 2018

A new study led by scientists from the Instituto de Astrofísica de Canarias (IAC) reveals that the giant exoplanet WASP-69b carries a comet-like tail made up of helium particles escaping from its gravitational field and ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

rrwillsj
1 / 5 (2) Oct 26, 2017
Mahvelous tan, dahling!

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.