The volatile processes that shaped the Earth

September 27, 2017, University of Oxford
Image illustrating the late-stage building blocks of planetary formation (planetessimals and proto-planets) and the extensive volatile degassing that took place. Credit: Ashley Norris, Oxford University

Oxford University scientists have shed new light on how the Earth was first formed.

Based on observations of newly-forming stars, scientists know that the solar system began as a disc of dust and gas surrounding the centrally-growing sun. The gas condensed to solids which accumulated into larger rocky bodies like asteroids and mini-planets. Over a period of 100 million years these mini-planets collided with one another and gradually accumulated into the planets we see today, including the Earth.

Although it is widely understood that Earth was formed gradually, from much smaller bodies, many of the processes involved in shaping our growing planet are less clear. In a new study featured on the cover of the latest edition of Nature, researchers from the University of Oxford's Department of Earth Sciences untangle some of these processes, revealing that the mini-planets added to Earth had previously undergone melting and evaporation. They also address another scientific conundrum: the Earth's depletion in many economically important chemical elements.

It is well known that the Earth is strongly depleted, relative to the solar system as a whole, in those elements which condensed from the early gas disc at temperatures less than 1000°C (for example, lead, zinc, copper, silver, bismuth, and tin). The conventional explanation is that the Earth grew without these volatile elements and small amounts of an asteroidal-type body were added later. This idea cannot, however, explain the "over abundance" of several other elements - notably, indium, which is now used in semiconductor technologies, as well as TV and computer screens.

Postgraduate student Ashley Norris and Bernard Wood, Professor of Mineralogy at Oxford's Department of Earth Sciences, set out to uncover the reasons behind the pattern of depletion of these volatile elements on Earth and for the "overabundance" of indium. They constructed a furnace in which they controlled the temperature and atmosphere to simulate the low oxidation state of the very early Earth and planetesimals. In a particular series of experiments they melted rocks at 1300°C in oxygen-poor conditions and determined how the different were evaporated from the molten lava.

During the experiments each of the elements of interest evaporated by different amounts. The lava samples were then rapidly cooled and the patterns of element loss determined by chemical analysis. The analyses revealed that the relative losses (volatilities) measured in the molten lava experiments agree very closely with the pattern of depletion observed in the Earth. In particular, indium volatility agrees exactly with its observed abundance in the Earth - its abundance, turns out not to be an anomaly.

Professor Bernard Wood said: 'Our experiments indicate that the pattern of volatile element depletion in the Earth was established by reaction between molten rock and an oxygen-poor atmosphere. These reactions may have occurred on the early-formed planetesimals which were accreted to Earth or possibly during the giant impact which formed the moon and which is believed to have caused large-scale melting of our planet.'

Having focused their original experiments on 13 key elements, the team are in the process of looking at how other elements, such as chlorine and iodine, behave under the same conditions.

Ashley Norris said: 'Our work shows that interpretation of volatile depletion patterns in the terrestrial planets needs to focus on experimental measurement of volatillities.'

Explore further: Meteorites give planetary formation clues

More information: C. Ashley Norris et al. Earth's volatile contents established by melting and vaporization, Nature (2017). DOI: 10.1038/nature23645

Related: 'Magnesium isotope evidence that accretional vapour loss shapes planetary compositions' by R. Hin, C. Coath, P. Carter, F. Nimmo et al in Nature. dx.doi.org/10.1038/nature23899

Related Stories

Meteorites give planetary formation clues

September 19, 2005

London researchers trying to understand how the planets formed have uncovered a new clue by analyzing meteorites that are older than the Earth.

Earth's carbon points to planetary smashup

September 5, 2016

Research by Rice University Earth scientists suggests that virtually all of Earth's life-giving carbon could have come from a collision about 4.4 billion years ago between Earth and an embryonic planet similar to Mercury.

Vesta's potassium-to-thorium ratio reveals hot origins

July 23, 2015

Studies of materials on the surface of Vesta offer new evidence that the giant asteroid is the source of howardite, eucrite and diogenite (HED) basaltic meteorites, supporting current models of solar system evolution and ...

What kinds of stars form rocky planets?

December 3, 2015

As astronomers continue to find more and more planets around stars beyond our own Sun, they are trying to discover patterns and features that indicate what types of planets are likely to form around different kinds of stars. ...

Recommended for you

Archaeologists discover Incan tomb in Peru

February 16, 2019

Peruvian archaeologists discovered an Incan tomb in the north of the country where an elite member of the pre-Columbian empire was buried, one of the investigators announced Friday.

Where is the universe hiding its missing mass?

February 15, 2019

Astronomers have spent decades looking for something that sounds like it would be hard to miss: about a third of the "normal" matter in the Universe. New results from NASA's Chandra X-ray Observatory may have helped them ...

What rising seas mean for local economies

February 15, 2019

Impacts from climate change are not always easy to see. But for many local businesses in coastal communities across the United States, the evidence is right outside their doors—or in their parking lots.

The friendly extortioner takes it all

February 15, 2019

Cooperating with other people makes many things easier. However, competition is also a characteristic aspect of our society. In their struggle for contracts and positions, people have to be more successful than their competitors ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.