Researcher unearths hottest rock on record

September 29, 2017 by Adela Talbot, University of Western Ontario
Credit: University of Western Ontario

It was a stroke of serendipity that led to Michael Zanetti's discovery of the hottest rock on Earth.

In 2011, Zanetti, now a postdoctoral researcher in Earth Sciences at Western, was on an analog mission with Earth Sciences professor Gordon Osinski at 28-kilometre-wide Mistastin Lake crater in Labrador – a Canadian Space Agency (CSA)-funded endeavour using the impact structure as a test bed for exploration strategies and field equipment for use on the moon and Mars.

A PhD student at Washington University in St. Louis at the time, Zanetti's eye honed in on something that stood out within the crater.

"My role was basically to assist the mock astronauts and take notes. Being a wide-eyed graduate student, I kept my eyes open for interesting rocks and things like that," he said.

"Being an impact crater guy and being in one, I was super excited. When I was out there, I found a rock that didn't look in place. It was essentially glass – which, in geotechnical terms, is a rock – that didn't have any crystals in it. It melted. Before it had a chance to form any little crystals in it – which form slowly as things cool – it cooled rapidly and quenched a glass," he explained.

When a city-sized asteroid hits the ground at 15 km/second, an enormous amount of energy is released, like "a billion hydrogen bombs worth of energy," Zanetti said.

This produces a lot of heat – so much heat, you could vaporize rocks. The rapid cooling that follows impact 'freezes' in place whatever is inside the rock. In the case of the glass rock that caught Zanetti's eye, small zircon grains from the host rocks were frozen in place.

Zircon – a mineral known by many as a cheap diamond substitute – doesn't break easily and doesn't melt, even at temperatures hot enough to melt surrounding rocks. Instead, the zircon grains present in recorded the heat at the time of the asteroid's impact 38 million years ago.

Michael Zanetti, now a postdoctoral researcher in Earth Sciences at Western, was on an analog mission with Earth Sciences professor Gordon Osinski at 28-kilometre-wide Mistastin Lake crater in Labrador, when he discovered a rock that records the hottest temperature on Earth. Credit: University of Western Ontario

The rock Zanetti found recorded the hottest temperature in a rock formation on Earth as a result of the asteroid impact – a whopping 2,370 C.

"The big picture here is this – very hot temperature is at the centre of the Earth; it is unusual here. There are hot temperatures and high pressures down deep in the Earth but not at the surface of the Earth," Zanetti said.

"You've got these little zircons floating around (in this rock). They're feeling the effects of this heat and one of the effects of this very high heat on zircon is to change its crystal structure to cubic zirconia. This little zircon inside this little sample I found records that; it got frozen in place by quenching to glass halfway through. If it had gone on another couple of seconds, the heat might have just completely engulfed this grain. But this is just kind of a rare happenstance that it got frozen halfway completed."

An analysis of the rock, and this record-breaking temperature, led by Nicholas Timms at Curtin University in Perth, Australia, co-authored by Zanetti and colleagues in Switzerland and the United States, was recently published in the journal Earth and Planetary Science Letters.

The crux of the science behind this discovery is that it closes the gap between computer models, Zanetti explained.

"We can do the math on what happens, and how much energy is really released when a giant asteroid hits the ground really fast, and we can get estimates on what these temperatures should be, and where in the crater these temperatures should be found. But what we have now is an actual hand specimen that we can say, 'This came from this place and it got this hot," he said.

The entire reason this rock was found was because of a Western-led CSA-funded expedition for something completely unrelated, Zanetti stressed.

"I didn't set out to find a hot . The other part of this is how lucky things can get. One, I was lucky to get on that mission, lucky to get this rare sample, lucky when I cut into it that I cut across one of these rare zircons, lucky that I was with a team of people who could identify it for what it was and lucky to find the right people to analyze it," he noted.

"Sometimes it takes just a bit of happenstance to find some cool things."

Explore further: Meteorite impact caused the highest temperature ever recorded on Earth's surface

More information: Nicholas E. Timms et al. Cubic zirconia in >2370 °C impact melt records Earth's hottest crust, Earth and Planetary Science Letters (2017). DOI: 10.1016/j.epsl.2017.08.012

Related Stories

Recommended for you

Antarctic ice shelf 'sings' as winds whip across its surface

October 16, 2018

Winds blowing across snow dunes on Antarctica's Ross Ice Shelf cause the massive ice slab's surface to vibrate, producing a near-constant set of seismic "tones" scientists could potentially use to monitor changes in the ice ...

New understanding of Mekong River incision

October 16, 2018

An international team of earth scientists has linked the establishment of the Mekong River to a period of major intensification of the Asian monsoon during the middle Miocene, about 17 million years ago, findings that supplant ...

World Heritage sites threatened by sea level rise

October 16, 2018

From Venice and the tower of Pisa to the medieval city of Rhodes, dozens of UNESCO World Heritage sites in the Mediterranean basin are deeply threatened by rising sea levels, researchers warned Tuesday.

Was life on the early Earth purple?

October 16, 2018

Early life forms on Earth may have been able to generate metabolic energy from sunlight using a purple-pigmented molecule called retinal that possibly predates the evolution of chlorophyll and photosynthesis. If retinal has ...

New interactive scenario explorer for 1.5 degrees C pathways

October 16, 2018

IIASA and the Integrated Assessment Modeling Consortium (IAMC) have made the scenarios underlying last week's Intergovernmental Panel on Climate Change (IPCC) 1.5°C Special Report publicly available in an interactive online ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.