Crash scene investigation reveals resting place of SMART-1 impact

September 25, 2017, Europlanet Media Centre
Discovery of SMART-1 impact site on high resolution Lunar Reconnaissance Orbiter images. The field is 50 metres wide (north is up). SMART-1 touched down from north to south at a grazing speed of 2 kilometres per second. This image, with west illumination, clearly shows a linear gouge of 15 metres length in the surface. Credit: P Stooke/B Foing et al 2017/ NASA/GSFC/Arizona State University

Observations of the moon have revealed the final resting place of the European Space Agency's first lunar mission, SMART-1. The spacecraft was sent into a controlled impact with the lunar surface 11 years ago. Although an impact flash was imaged at the time by the Canada-France-Hawaii Telescope on the dark side of the boundary between night and day on the lunar surface, the exact location had not been identified until now. Results have been presented today at the European Planetary Science Congress (EPSC) 2017 in Riga.

ESA SMART-1 Project Scientist, Bernard Foing, says: "SMART-1 had a hard, grazing and bouncing landing at two kilometres per second on the surface of the moon. There were no other in orbit at the time to give a close-up view of the impact, and finding the precise location became a 'cold case' for more than 10 years. For this 'Crash Scene Investigation', we used all possible Earth witnesses, observational facts and computer models to identify the exact site and have finally found the scars. The next steps will be to send a robotic investigator to examine the remains of the SMART-1 spacecraft body and 'wings' of the solar arrays."

The location is 34.262° south and 46.193° west, consistent with the coordinates of impact calculated initially. The SMART-1 impact site was discovered by Dr Phil Stooke, of Western University, Ontario, using high-resolution images from NASA's Lunar Reconnaissance Orbiter (LRO). The images show a linear gouge in the surface, about four metres wide and 20 metres long, cutting across a small pre-existing crater. At the far end, a faint fan of ejecta sprays out to the south.

Discovery of SMART-1 impact site on high resolution Lunar Reconnaissance Orbiter images. The field is 50 metres wide (north is up). SMART-1 touched down from north to south at a grazing speed of 2 kilometres per second. This image has sunlight shining along the gouge, so it has no clear shadows, but it displays the fan of bear ejecta more clearly. Credit: P Stooke/B Foing et al 2017/ NASA/GSFC/Arizona State University

Foing said: "The high resolution LRO images show white ejecta, about seven metres across, from the first contact. A north-south channel has then been carved out by the SMART-1 spacecraft body, before its bouncing ricochet. We can make out three faint but distinct ejecta streams from the impact, about 40 metres long and separated by 20-degree angles."

Stooke said: "Orbit tracking and the impact flash gave a good estimate of the impact location, and very close to that point was a very unusual small feature. It now seems that impacts of orbiting spacecraft, seen here from SMART-1, and also in the cases from GRAIL and LADEE, will form elongated craters, most of whose rather faint ejecta extends downrange".

Prof Mark Burchell of the University of Kent, who performed laboratory impact experiments and simulated the SMART-1 grazing impact conditions, said: "It is exciting to see for the first time the real scars from the SMART-1 , and compare them to the models and laboratory simulations."

Explore further: SMART-1 impact flash and debris: Crash scene investigation

Related Stories

SMART-1 impact flash and debris: Crash scene investigation

September 7, 2006

Timing, location, detection of a flash and of ejected material, and a firework generated by the lunar impact of ESA's SMART-1, are the latest results gathered thanks to the ground observation campaign of this historical event.

SMART-1 maps its own impact site

August 31, 2006

This mosaic of images, obtained by the Advanced Moon Imaging Experiment (AMIE) on board ESA's SMART-1 spacecraft, shows the SMART-1 landing site on the Moon.

SMART crater on the Moon

September 4, 2012

(Phys.org)—On the morning of 3 September 2006, a brief flash illuminated the Moon's 'Lake of Excellence' as ESA's SMART-1 mission met its fate on the dusty surface.

SMART-1: Europe on the Moon, 1 year on

August 31, 2007

A year ago, as Europe reached the Moon for the first time, scientists on Earth eagerly watched SMART-1’s spectacular impact. New results from the impact analysis and from the instruments still keep coming.

Recommended for you

NASA's new mini satellite will study Milky Way's halo

July 18, 2018

Astronomers keep coming up short when they survey "normal" matter, the material that makes up galaxies, stars and planets. A new NASA-sponsored CubeSat mission called HaloSat, deployed from the International Space Station ...

Supersharp images from new VLT adaptive optics

July 18, 2018

ESO's Very Large Telescope (VLT) has achieved first light with a new adaptive optics mode called laser tomography—and has captured remarkably sharp test images of the planet Neptune and other objects. The MUSE instrument ...

Jupiter's moon count reaches 79, including tiny 'oddball'

July 17, 2018

Twelve new moons orbiting Jupiter have been found—11 "normal" outer moons, and one that they're calling an "oddball." This brings Jupiter's total number of known moons to a whopping 79—the most of any planet in our Solar ...

Astronomers find a famous exoplanet's doppelgänger

July 17, 2018

When it comes to extrasolar planets, appearances can be deceiving. Astronomers have imaged a new planet, and it appears nearly identical to one of the best studied gas-giant planets. But this doppelgänger differs in one ...

Dawn mission to gather more data in home stretch

July 17, 2018

As NASA's Dawn spacecraft prepares to wrap up its groundbreaking 11-year mission, which has included two successful extended missions at Ceres, it will continue to explore—collecting images and other data.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.