Carving diamonds for optical components

September 5, 2017 by Laure-Anne Pessina, Ecole Polytechnique Federale de Lausanne
Carving diamonds for optical components
Credit: Ecole Polytechnique Federale de Lausanne

Thanks to a new technique developed at EPFL, optical diffraction gratings can now be made out of pure diamond, with their surfaces smoothed down to the very last atom. These new devices can be used to alter the wavelength of high-powered lasers or in cutting-edge spectrographs.

A team of EPFL researchers has developed an unconventional way of microscopically cutting into a particular shape and smoothing them at an atomic level. This , which will be presented at the International Conference on Diamond and Carbon Materials DCM2017 on 5 September, makes it possible to manufacture diffraction gratings out of pure diamond, which has unique properties that are ideal for both spectroscopy and the optical components used in high-powered lasers.

Diffraction gratings are made up of parallel grooves that break up light into its spectral components, kind of like a prism. These gratings are usually made out of glass and silicon, materials that have already been used in spectrographs and to alter the color emitted by lasers.

The team, led by Niels Quack, a SNSF-funded professor at the School of Engineering, has now found a way to make these gratings out of single crystal diamond as well, opening up the field to an array of new possibilities. Diamonds are unmatched in terms of their thermal conductivity, which is between five and ten times greater than that of any other material used for this purpose. Diamonds are also extremely hard and work well with UV rays, as well as infrared and visible beams. "Diamonds are chemically inert, which means that even the most aggressive chemical substances can't attack them. But it also means that they are very difficult to machine," explains Dr. Quack. "So this new way of carving diamonds could prove very useful."

Credit: Murielle Gerber / 2017 EPFL

Using oxygen to cut diamonds

The technique developed by the researchers is groundbreaking because it allows them to etch well defined shapes into millimeter sized single-crystal diamond plates, with the grooves separated by just a few microns and with incredibly smooth surfaces. To develop their technique, the researchers used diamonds created synthetically through chemical vapor deposition.

The diamonds are etched in several stages. First, a hard mask is deposited and structured on the of a diamond plate, which is then exposed to an oxygen plasma. The in the plasma are accelerated onto the surface of the diamond by an electric field. Where not covered by the hard mask, the oxygen ions remove carbon atoms from the diamond's surface one by one. "By adjusting the intensity of the , we can alter the shape we etch into the diamond," explains Dr. Quack. "For the diffraction gratings, we carve out triangular grooves that are just a few microns apart from each other. We adjust the process parameters to selectively reveal a set of well-defined crystal planes, allowing us to create V-shaped grooves that are smoothed down almost to the . It is impossible to get this kind of precision when the diamonds are simply cut with a laser."

Explore further: Amorphous diamond synthesized

Related Stories

Amorphous diamond synthesized

August 31, 2017

A team of Carnegie high-pressure physicists have created a form of carbon that's hard as diamond, but amorphous, meaning it lacks the large-scale structural repetition of a diamond's crystalline structure. Their findings ...

Ultra-thin slices of diamonds reveal geological processes

June 21, 2016

Diamonds are not only beautiful and valuable gems, they also contain information of the geological history. By using ultra-thin slices of diamonds, Dorrit E. Jacob and her colleagues from the Macquarie University in Australia ...

Diamonds coupled using quantum physics

April 10, 2017

Atomic defects in diamonds can be used as quantum memories. Researchers at TU Wien for the first time have succeeded in coupling the defects in various diamonds using quantum physics.

Bit of bling adds new dimension to laser beam technology

December 11, 2008

(PhysOrg.com) -- No longer just an expensive ornament, diamonds are now of a sufficient size and quality to attract the eye of a team of physicists at Macquarie University, who are using them to develop a new more powerful ...

Recommended for you

Integrating optical components into existing chip designs

April 19, 2018

Two and a half years ago, a team of researchers led by groups at MIT, the University of California at Berkeley, and Boston University announced a milestone: the fabrication of a working microprocessor, built using only existing ...

Atoms may hum a tune from grand cosmic symphony

April 19, 2018

Researchers playing with a cloud of ultracold atoms uncovered behavior that bears a striking resemblance to the universe in microcosm. Their work, which forges new connections between atomic physics and the sudden expansion ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.