Bit of bling adds new dimension to laser beam technology

December 11, 2008

Richard Mildren works with a CVD diamond.
( -- No longer just an expensive ornament, diamonds are now of a sufficient size and quality to attract the eye of a team of physicists at Macquarie University, who are using them to develop a new more powerful laser.

And, says leader of the research, Richard Mildren, despite their size and impressive appearance, the diamonds used in the laser experiments are surprisingly affordable.

"Using natural diamonds in this type of work is problematic - the quality is not consistent and, as everybody knows, they're very expensive," Mildren said.

"In the last two to three years the production method has really ramped up - diamonds can now be grown using a method called chemical vapour deposition (CVD) and a one centimetre-long crystal can be purchased for around $2000."

Diamonds can transmit heat and light very effectively, creating the potential for very powerful lasers and making them of extreme interest to scientists.

Their excellent optical properties have long been known, and there have been significant efforts around the globe to demonstrate diamond (diode) lasers for more than 15 years.

Mildren's team has now built the first diamond laser using a technique based on the Raman effect. Not only has this demonstrated a new more effective method for generating a powerful beam, it has also shown that CVD diamonds are of adequate size and quality to enable exploration of a new class of laser devices.

"This research could pave the way for new laser sources over a wide range of wavelengths and with very high power levels," Mildren said.

"The next step is to see how effectively CVD diamond lasers operate at even higher power levels. We'd also like to investigate the potential for diamond Raman lasers in the ultraviolet and long wave infrared regions where other materials can't operate."

If his future experiments are again successful, Mildren said there was potential for diamond Raman lasers to be used in everything from terahertz threat detection (eg. body scanning devices at airports) and ultra high precision laser surgery, to defence applications (eg. directed energy weapons).

Provided by Macquarie University

Explore further: Using diamonds to recharge civilian drones in flight

Related Stories

Using diamonds to recharge civilian drones in flight

November 7, 2018

A small lab-grown diamond measuring a few millimeters per side could one day enable civilian drones to be recharged in mid-flight through a laser. Thanks to the diamond, the laser beam can remain strong enough over a long ...

Two-micron fill tubes fill two needs

December 13, 2018

Lawrence Livermore National Laboratory's National Ignition Facility (NIF) and General Atomics engineers have created an inertial confinement fusion (ICF) fuel capsule with a two-micron-diameter fill tube—and along the way, ...

New diamond laser 20 times more powerful

August 13, 2015

Researchers from the MQ Photonics Research Centre joined with fiber laser experts from the Fraunhofer Institute for Applied Optics and Precision Engineering in Jena, Germany to demonstrate a diamond laser 20 times more powerful ...

Recommended for you

New thermoelectric material delivers record performance

January 17, 2019

Taking advantage of recent advances in using theoretical calculations to predict the properties of new materials, researchers reported Thursday the discovery of a new class of half-Heusler thermoelectric compounds, including ...

Zirconium isotope a master at neutron capture

January 17, 2019

The probability that a nucleus will absorb a neutron is important to many areas of nuclear science, including the production of elements in the cosmos, reactor performance, nuclear medicine and defense applications.

Mechanism helps explain the ear's exquisite sensitivity

January 16, 2019

The human ear, like those of other mammals, is so extraordinarily sensitive that it can detect sound-wave-induced vibrations of the eardrum that move by less than the width of an atom. Now, researchers at MIT have discovered ...


Adjust slider to filter visible comments by rank

Display comments: newest first

2.4 / 5 (5) Dec 11, 2008
lasers to be used in everything from terahertz threat detection (eg. body scanning devices at airports) and ultra high precision laser surgery, to defence applications (eg. directed energy weapons).

Cool. Quicker lines at airport security (just vaporize the guy whose shoes keep setting off the metal detector), surgicaly remove tumors with a high power laser that could potentialy cause more cancer in any cells it doesn't kill, and of course, phasers!
4 / 5 (4) Dec 11, 2008
Aren't phasers actually charged particle weapons (in theory)?
4.3 / 5 (3) Dec 11, 2008
yes, they are.
4.3 / 5 (3) Dec 11, 2008
Ok, fine. No phasers.
3 / 5 (1) Dec 11, 2008
Must be thinking of the diamond laser built by Blofeld in Diamonds Are Forever.
2 / 5 (2) Dec 11, 2008
Phasers supposedly work by "modulating the strong nuclear force", causing atomic nuclei to debond. In theory, it would be a fantastic weapon, but so far as I know there is no experimental evidence that the force can be modulated.

I don't see why not. I have no idea how to go about doing it, but i'm sure in a century or two we should have developed some modicum of control over the strong nuclear force just like we have with electromagnatism.
3 / 5 (1) Dec 12, 2008
^ Well as for manipulating the strong nuclear force...can you say fission?
not rated yet Dec 12, 2008
this is a description of a raman laser

not rated yet Dec 12, 2008
^ Well as for manipulating the strong nuclear force...can you say fission?

Fission doesn't manipulate the strong nuclear force, it overcomes it. Much in the same way that space shuttles overcome gravity rather than attempting to manipulate it.
not rated yet Jan 19, 2009
theophys, why would a laser beam cause cancer? That's not how light works and that's not how chemo works. The beam from a laser would be focused enough to effect matter in its immediate contact. Of course light can be manipulated to more permeate a substance, somewhat like how a microwave cooks your food, but that's somewhat contradictory to the function of a laser. Laser surgery would function both as a super fine scalpel and a cauterizing tool to seal wounds. Laser technology can even effectively reduce scaring. But you risk more cancer by microwaving your food than being operated under a laser scalpel.
Besides, countless EM frequencies pass through our body every day, even before the invention of cell phones. Our planet has a magnetic field, as does the sun, and though some forms of UV light among others are hazardous, many light scanning technologies have proven to be completely harmless.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.