Inspecting matter using terahertz light

August 7, 2017
One of the purposes of FLUTE is to accelerate electron clouds in a compact form and thus make THz radiation available to life and materials sciences. Credit: KIT

In materials research, chemistry, biology, and medicine, chemical bonds, and especially their dynamic behavior, determine the properties of a system. These can be examined very closely using terahertz radiation and short pulses. KIT's FLUTE accelerator will be used for the development of new accelerator technologies for compact and powerful terahertz sources that are supposed to serve as efficient research and application tools.

"The KIT scientists excel in their ability to come up with creative ideas and explore new fields of application," as Professor Holger Hanselka, President of KIT, points out. "With the compact FLUTE accelerator, KIT opens the door to a new tool that will enable biologists, analytical chemists, and materials scientists to obtain outstanding insights."

The FLUTE facility (this abbreviation is derived from its German name: Ferninfrarot Linac- und Test-Experiment) is a development platform for accelerator physics studies. It will serve as a test facility for methods that allow, in a first step, to better understand, measure, and control the complex dynamics of ultra-short electron bunches. Only very compact electron bunches can generate intensive, brilliant, and coherent . The special challenge faced when designing accelerators such as FLUTE is to keep the electron cloud so compact during the acceleration process that its expansion is smaller than the wavelength of the generated electromagnetic radiation. Only then, the waves overlap each other, forming pulses of high intensity with a duration of picoseconds or femtoseconds.

The FLUTE linear accelerator accelerates electron clouds in order to generate terahertz rays. Credit: KIT

In the long run, control of the electron bunches must be improved in such a way that the terahertz radiation can be adapted perfectly to the intended application. Terahertz radiation could open up new domains of application for which the neighboring visible light and radio waves are unsuitable. As a research infrastructure, FLUTE will also be used for the development of terahertz radiation measuring methods that can be employed in materials and life sciences. Protein oscillations can be examined just as well as the behavior of superconductors or novel semiconductors.

Within the FLUTE accelerator, whose length is approx. 12 meters, the electrons are accelerated to reach an energy of up to 50 MeV. The is compressed to a few micrometers so that radiation with a frequency of 30 or more can be generated. Besides the Institute for Beam Physics and Technology at KIT, development partners from all over Europe, above all the Swiss Paul Scherrer Institute (PSI), participate in the FLUTE project.

Explore further: Team shrinks particle accelerator: Prototype demonstrates feasibility of building terahertz accelerators

More information: M. J. Nasse et al. FLUTE: A versatile linac-based THz source, Review of Scientific Instruments (2013). DOI: 10.1063/1.4790431

Related Stories

FLASHForward accelerates first electron bunches

February 28, 2017

The plasma accelerator project FLASHForward achieved an important milestone in January: for the first time, the facility's high-power laser accelerated electron bunches in a plasma cell. Later in the operational phase, the ...

New device converts DC electric field to terahertz radiation

August 4, 2015

Terahertz radiation, the no-man's land of the electromagnetic spectrum, has long stymied researchers. Optical technologies can finagle light in the shorter-wavelength visible and infrared range, while electromagnetic techniques ...

Towards mastering terahertz waves?

March 7, 2017

The terahertz waves span frequency ranges between the infrared spectrum (used, for example, for night vision) and gigahertz waves (which find their application, among other, in Wi-Fi connections). Terahertz waves allow for ...

Terahertz radiation: A useful source for food safety

June 17, 2016

An effective and less expensive tool for the inspection of food and drugs could soon be a reality. Scientists from the Fritz Haber Institute of the Max Planck Society in Berlin have been working with national and international ...

Recommended for you

Single-photon detector can count to four

December 15, 2017

Engineers have shown that a widely used method of detecting single photons can also count the presence of at least four photons at a time. The researchers say this discovery will unlock new capabilities in physics labs working ...

Real-time observation of collective quantum modes

December 15, 2017

A cylindrical rod is rotationally symmetric - after any arbitrary rotation around its axis it always looks the same. If an increasingly large force is applied to it in the longitudinal direction, however, it will eventually ...

A shoe-box-sized chemical detector

December 15, 2017

A chemical sensor prototype developed at the University of Michigan will be able to detect "single-fingerprint quantities" of substances from a distance of more than 100 feet away, and its developers are working to shrink ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.