The source of up to half of the Earth's internal heat is completely unknown—here's how to hunt for it

August 4, 2017 by Jocelyn Monroe And Michael Leyton, The Conversation
Credit: pixabay

It may not be obvious while lying in the sun on a hot summer's day, but a considerable amount of heat is also coming from below you – emanating from deep within the Earth. This heat is equivalent to more than three times the total power consumption of the entire world and drives important geological processes, such as the movement of tectonic plates and the flow of magma near the surface of the Earth. But despite this, where exactly up to half of this heat actually comes from is a mystery.

It is thought that a type of neutrinos – particles with extremely low mass – emitted by radioactive processes in the Earth's interior may provide important clues to solving this mystery. The problem is that they are nearly impossible to catch. But in a new paper, published in the journal Nature Communications, we have set out a way to do just that.

The known sources of heat from the Earth's interior are radioactive decays, and residual heat from when our planet was first formed. The amount of heating from radioactivity, estimated based on measurements of the composition of rock samples, is highly uncertain – accounting for anywhere from 25-90% of the total heat flow.

Elusive particles

Atoms in radioactive materials have unstable nuclei, meaning they can split up (decay to a stable state) by giving off nuclear radiation – some of which gets converted to heat. This radiation consists of various particles with specific energies – depending on what material emitted them – including neutrinos. When the radioactive elements decay within the Earth's crust and mantle, they emit "geo-neutrinos". In fact, each second, the Earth radiates more than a trillion trillion such particles to space. Measuring their energy can tell researchers about what material produced them and therefore the composition of the Earth's hidden interior.

Earth’s core.

The main known sources of radioactivity within the Earth are unstable types of uranium, thorium and potassium – something we know based on samples of rock up to 200km below the surface. What lurks beneath that depth is uncertain. We know that the geo-neutrinos emitted when uranium decays have more energy than those emitted when potassium splits up. So by measuring the energy of geo-neutrinos, we can know what type of radioactive material they come from. In fact, this is a much easier way to figure out what's inside the Earth than drilling tens of kilometres down below the surface.

Unfortunately, geo-neutrinos are notoriously difficult to detect. Rather than interacting with ordinary matter such as that inside detectors, they tend to just whizz right through them. That's why it took a huge underground detector filled with with about 1,000 tonnes of liquid to make the first observation of geo-neutrinos, in 2003. These detectors measure neutrinos by registering their collision with atoms in the liquid.

Since then, only one other experiment has managed to observe geo-neutrinos, using a similar technology. Both measurements imply that approximately half of the Earth's heat caused by radioactivity (20 terawatts) can be explained by decays of uranium and thorium. The source of the remaining 50% is an open question.

However, measurements so far have been unable to measure the contribution from potassium decays – the neutrinos emitted in this process have too low an energy. So it could be that the rest of the heat comes from potassium decay.

Earth heat flow map. Credit: wikipedia, CC BY-SA

New technology

Our new research suggests we can make a map of the heat flow from inside the Earth by measuring the direction the geo-neutrino comes from, as well as its energy. This sounds simple, but the technological challenge is formidable, requiring new particle detection technology.

We propose using gas-filled "time projection chamber detectors". Such detectors work by making a 3-D picture of a geo-neutrino colliding with the gas inside it – knocking off an electron from a gas atom. The movement of this electron can then be tracked over time to reconstruct one dimension of the process (time). High-resolution imaging technology can then reconstruct the two spatial dimensions of its movement. In the liquid detectors currently used, the particles that get knocked off in collisions travel such a short distance (because they are in a liquid) that the direction is impossible to resolve.

Similar detectors, on a smaller scale, are currently used to make precision measurements of neutrino interactions, and to search for dark matter. We calculated that the size of the detector needed to discover the geo-neutrinos from radioactive potassium would be 20 tonnes. To properly map the mantle composition for the first time, it would need to be 10 times more massive. We have built a prototype for such a , and are working on scaling up.

Measuring geo-neutrinos in this way could help map the in the Earth's interior. This would help us to understand the evolution of the inner core by assessing the concentration of radioactive elements. It could also help unravel the longstanding mystery of what source of heat powers the convection (transfer of by movement of fluids) in the outer core that generates the Earth's geomagnetic field. This field is vital for retaining our atmosphere which protects life on Earth from the sun's harmful radiation.

It's strange that we know so little about what's going on under the ground that we walk on. That makes it exciting to think about how these measurements could finally allow the pioneering exploration of the veiled inner workings of the Earth.

Explore further: Team records neutrinos from the Earth's mantle

Related Stories

Team records neutrinos from the Earth's mantle

August 10, 2015

(Phys.org)—A team of researchers working on the Borexino Collaboration at Gran Sasso National Laboratory in Italy is reporting that they have detected neutrinos emanating from the Earth's mantle. In their paper published ...

Finding neutrinos – a Q&A with Matthew Green

August 4, 2017

Matthew Green is an assistant professor of physics at NC State. He was involved in a multi-institutional research project aimed at detecting a process called Coherent Elastic Neutrino Nuclear Scattering (CEvNS). The project ...

New results on geo-neutrinos from Borexino

March 14, 2013

(Phys.org) —Borexino is a liquid scintillator detector mainly built for solar neutrino searches. Due to its high level of radiopurity, a worldwide record, Borexino can also detect rare events such as electron-antineutrinos ...

Borexino experiment detects geo-neutrinos

March 16, 2010

(PhysOrg.com) -- The Borexino collaboration of about 80 scientists from six countries, who have been working with a detector buried 1.5 km beneath the Gran Sasso mountain near l'Aquila in Italy have detected geo-neutrinos, ...

Recommended for you

Quantum internet goes hybrid

November 22, 2017

In a recent study published in Nature, ICFO researchers led by ICREA Prof. Hugues de Riedmatten report an elementary "hybrid" quantum network link and demonstrate photonic quantum communication between two distinct quantum ...

Enhancing the quantum sensing capabilities of diamond

November 22, 2017

Researchers have discovered that dense ensembles of quantum spins can be created in diamond with high resolution using an electron microscopes, paving the way for enhanced sensors and resources for quantum technologies.

Study shows how to get sprayed metal coatings to stick

November 21, 2017

When bonding two pieces of metal, either the metals must melt a bit where they meet or some molten metal must be introduced between the pieces. A solid bond then forms when the metal solidifies again. But researchers at MIT ...

Imaging technique unlocks the secrets of 17th century artists

November 21, 2017

The secrets of 17th century artists can now be revealed, thanks to 21st century signal processing. Using modern high-speed scanners and the advanced signal processing techniques, researchers at the Georgia Institute of Technology ...

3 comments

Adjust slider to filter visible comments by rank

Display comments: newest first

rrwillsj
2.5 / 5 (2) Aug 04, 2017
Uhhmm, yeah, but? I failed to notice any mention of the possible effect of tidal forces. Especially, Lunar and Solar tides causing frictional heating of the Earth's mass flexing from the strain....

Did I miss something?
Nik_2213
3 / 5 (2) Aug 04, 2017
The Moon's slow retreat may be measured by laser from retro-reflectors on Apollo set-outs and two Russian rovers. This allows the sum of Earth & Ocean tidal dissipation to be estimated at, IIRC, ~ 3.75 terrawatts total, ~2/3 in the oceans. The Earth's total internal heating amounts to ~44 terrawatts. If half of that is U/Th derived, that still leaves a dozen times the Earth Tide's input to find. How does that split between Potassium and 'others' ? And what are those 'others' ??
Graeme
not rated yet Aug 05, 2017
Yet other heating mechanisms could be considered. Perhaps there other radioactive isotopes in the core. It is unlikely there is a lot, but perhaps their geoneutrino emissions could be detected. Telluric electric currents will be dissipating energy deep in the Earth. Perhaps high energy neutrinos are being absorbed and are dumping energy internally. Recrystallization of deep minerals under pressure would also be releasing heat. There could also be some residual heat from asteroid collisions. (in addition to tidal heating mentioned above)

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.