New neutron holography technique opens a window for obtaining clear 3-D atomic images

August 29, 2017
Nearest Ca2+ images are split into two parts due to the extra positive charge by Eu3+. The interstitial F- image is observed between Ca2+ images.The additional F- is needed for the compensation of the excessive charge. Dashed circles indicate original positions of Ca atoms without doping Eu. Credit: NITech

People usually associate holograms with futuristic 3-D display technologies, but in reality, holographic technologies are now being used to study materials at the atomic level. X-rays, a high-energy form of light, are often used to study atomic structure. However, X-rays are only sensitive to the number of electrons associated with an atom. This limits the use of X-rays for studying materials made up of lighter elements. Neutron measurements can often fill in the structural gaps when X-ray measurements fail, but neutron beams are harder to produce and have lower intensities than X-ray beams, which limits their versatility.

Now, a collaboration among Japanese researchers from national particle accelerator facilities across Japan has developed a new multiple-wavelength neutron holography technique that can give insight into previously unknown structures. They demonstrated a new neutron holographic method using a europium-doped CaF2 single crystal and obtained clear three-dimensional atomic images around trivalent Eu-substituted divalent Ca, revealing never-before-seen intensity features of the local structure that allows it to maintain charge neutrality.

"We knew that neutron holography might be able to tell us more about the structure of a europium-doped calcium fluoride crystal," says lead author Kouichi Hayashi. "Europium ions add extra positive charge to the crystal structure, and our neutron holograms showed how fluorine atoms arranged in the lattice to balance this excess charge. These kinds of structural problems are often encountered by materials scientists developing new electronic materials, and our method offers an exciting new tool for these researchers."

The new holographic method works by firing neutrons with controlled speed at a sample, which in this case is the europium-doped calcium fluoride crystals. Neutrons are normally thought of as particles, but also have wave-like properties similar to light, depending on their speed. When the neutrons hit europium atoms, gamma rays are produced in a pattern controlled by the local structure. The gamma ray patterns, or holograms, measured from neutrons travelling at different speeds are combined to produce a three-dimensional representation of the europium atoms in the crystal.

Hayashi says, "Neutron sources are less intense than X-ray sources, but it is essential that we work around this issue to develop more effective methods for exploring structures with light elements. Our work here represents a step towards a full toolbox of commentary X-ray and techniques for materials research."

Explore further: Work on pioneering pan-European neutron facility underway

More information: Kouichi Hayashi et al, Multiple-wavelength neutron holography with pulsed neutrons, Science Advances (2017). DOI: 10.1126/sciadv.1700294

Related Stories

Work on pioneering pan-European neutron facility underway

October 21, 2014

A state-of-the-art facility capable of generating neutron beams 30 times brighter than current facilities is about to be constructed in the Swedish town of Lund. The EUR 1.8 billion will help scientists examine and test new ...

Electron diffraction locates hydrogen atoms

January 13, 2017

Diffraction-based analytical methods are widely used in laboratories, but they struggle to study samples that are smaller than a micrometer in size. Researchers from the Laboratoire de cristallographie et sciences des matériaux ...

Researchers build bench size laser-pulsed neutron source

February 1, 2013

(Phys.org)—Researchers from Institut für Kernphysik in Germany, working with colleagues from Sandia National Laboratories and Los Alamos National Laboratory, have succeeded in building a compact neutron source small enough ...

Recommended for you

Two teams independently test Tomonaga–Luttinger theory

October 20, 2017

(Phys.org)—Two teams of researchers working independently of one another have found ways to test aspects of the Tomonaga–Luttinger theory that describes interacting quantum particles in 1-D ensembles in a Tomonaga–Luttinger ...

Using optical chaos to control the momentum of light

October 19, 2017

Integrated photonic circuits, which rely on light rather than electrons to move information, promise to revolutionize communications, sensing and data processing. But controlling and moving light poses serious challenges. ...

Black butterfly wings offer a model for better solar cells

October 19, 2017

(Phys.org)—A team of researchers with California Institute of Technology and the Karlsruh Institute of Technology has improved the efficiency of thin film solar cells by mimicking the architecture of rose butterfly wings. ...

Terahertz spectroscopy goes nano

October 19, 2017

Brown University researchers have demonstrated a way to bring a powerful form of spectroscopy—a technique used to study a wide variety of materials—into the nano-world.

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

nikola_milovic_378
not rated yet Sep 06, 2017
If the neutron is the most complex subatomic particle, how can you be sure that a 3D hologram of lower particle structures can be better explored with it?
Does this mean that science has not yet realized that the neutron particles are composed of: 3 quarks, 3 gluons that connect these quarks and free gluon obtained by annihilation of an electron-positron pair. Learn this and you will easily understand everything else you do not know.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.