Nanostructured metamaterials identify the chemical nature of tiny molecules

August 24, 2017, Okayama University
Nanostructured metamaterials identify the chemical nature of tiny molecules
Figure 1: Researchers at Okayama University have created a new IR spectroscopic technique utilizing an engineered metamaterial to enhance the signal quality. Trials on a polymer nano-film showed a distinct IR absorption at the zeptomole level, corresponding to a few thousand organic molecules. Credit: Okayama University

Infrared (IR) absorption spectroscopy plays a central role in materials and life sciences and security detection for the direct analysis of molecular fingerprints, including molecular structures, composition, and environment.

However, IR inspection of extremely small amounts of is challenging due to background IR noise, hence there is a high demand for enhancing the signal quality of this technique.

Now, Atsushi Ishikawa and Kenji Tsuruta at Okayama University, in the collaboration with RIKEN, Japan, have developed a novel metamaterial—an engineered optical material— to manipulate IR light in the desired manner. The metamaterial could then harness the unwanted background noise, thereby dramatically boosting the ultimate sensing capability of IR spectroscopy.

The researchers came up with a unique asymmetric metamaterial design, made of 20 nm gold films on a silicon substrate (Fig.1) to rotate the polarization, that is the orientation of IR wave oscillations, during measurements. In this way, the molecules attached on the metamaterial showed different polarization from the others, and the researchers were able to detect only the target molecular signal by totally eliminating the unwanted background light.

The capabilities of the new metamaterial were tested by identifying the vibrational stretching of carbon-oxide double bonds in a poly(methyl methacrylate) (PMMA) nano-film. The measurement showed a distinct IR absorption of carbon-oxide stretching, achieving zeptomole sensitivity with a dramatically enhanced signal quality (Fig.1).

The new metamaterial approach developed by the team enabled highly-detailed IR measurements of tiny molecules at the zeptomole level, corresponding to a few thousand organic molecules. The researchers expect their new technique will open doors to the development of ultrasensitive IR inspection technologies for sophisticated applications, such as environmental monitoring and analysis of human breath for diagnostics.

Explore further: Metamaterial absorbers for infrared inspection technologies

More information: Atsushi Ishikawa et al. Cross-Polarized Surface-Enhanced Infrared Spectroscopy by Fano-Resonant Asymmetric Metamaterials, Scientific Reports (2017). DOI: 10.1038/s41598-017-03545-8

Related Stories

Metamaterial absorbers for infrared inspection technologies

September 28, 2015

Plasmonic metamaterials are man-made substances whose structure can be manipulated to influence the way they interact with light. As such, metamaterials offer an attractive platform for sensing applications, including infrared ...

Recommended for you

Atomic-scale ping-pong

June 20, 2018

New experiments by researchers at the National Graphene Institute at the University of Manchester have shed more light on the gas flow through tiny, angstrom-sized channels with atomically flat walls.

Chameleon-inspired nanolaser changes colors

June 20, 2018

As a chameleon shifts its color from turquoise to pink to orange to green, nature's design principles are at play. Complex nano-mechanics are quietly and effortlessly working to camouflage the lizard's skin to match its environment.

Method could help boost large scale production of graphene

June 19, 2018

The measure by which any conductor is judged is how easily, and speedily, electrons can move through it. On this point, graphene is one of the most promising materials for a breathtaking array of applications. However, its ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.