Nanomaterial wrap for improved tissue imaging

August 21, 2017, Tokai University
Nanomaterial wrap for improved tissue imaging
Figure 1. [Fig. 1B of the paper]. A 133-nm thick CYTOP nanosheet, floating on water, used for wrapping biological tissue for improved microscopy imaging. Credit: Tokai University

Researchers at Tokai University describe in Advanced Materials how wrapping biological tissue in a nanosheet of a particular organic material results in high-quality microscopy images. Application of the wrap prevents the sample from drying out, and hence from shrinking, enabling larger image-recording times.

In order to fully understand how biological cells function, it is important to be able to visualize them in their environment, on long-enough timescales and with high-enough resolution. However, typical setups for studying a biological sample by means of optical microscopy do not prevent the sample from drying out, making it shrink during observation, resulting in blurred images. But now, a team of researchers led by Yosuke Okamura from Tokai University, has discovered how to overcome this problem: wrapping the sample in a fluoropolymer nanosheet preserves its , and the sheet's strong adhesion makes it mountable.

The researchers, who were inspired by the use of plastic food wrap, investigated the wrapping properties of a fluorine-containing polymer known as CYTOP, a stiff but stretchable and highly optically transparent material. They first confirmed that due to its high water-repellency, a nanosheet of CYTOP floats on water, even after adding a surfactant. Scanning-electron-microscopy observations revealed that the nanosheet is flat and free of cracks or wrinkles.

As a first test of CYTOP as a wrapper material for biological tissues, the researchers coated a cylindrically shaped alginate-hydrogel—an easily formable biomaterial—sample in a CYTOP nanosheet, and monitored the evolution of its water content. They found that after 24 hours, 60% of the original water content was still present. (A similar sample left unwrapped in air became totally dehydrated after about 10 hours.) Through experimenting with various thicknesses, the scientists discovered that the nanosheet's water-retention capability increases proportionally with its thickness. They concluded that a 133-nm-thick sheet offers sufficient surface adhesion (necessary for fixing the sample) and water retention.

The researchers then performed experiments with an actual biological sample: 1-mm-thick brain slices from mice, exhibiting enhanced expression of yellow fluorescent protein for visualisation purposes. Without applying a CYTOP wrap, evaporation of the embedded caused local, non-uniform sample shrinkage, leading to a blurred image. By wrapping the brain slices in a CYTOP nanosheet, however, images with a high spatial resolution could be obtained from scanning a large area (more than 750 µm x 750 µm) over a long time (about 2 hours).

The scientists noted, however, that for observations over longer time spans shrinkage will occur. This effect can be compensated by embedding the sample with agarose, a gel-forming material, providing a stability matrix—a technique already used for mounting for microscopy observations. The wrapping technique of Okamura and colleagues is still at an early stage, but, as the researchers point out, it "establishes and verifies the superiority of nanosheet wrapping mounts for tissue imaging."

Explore further: A microscope within a microscope

More information: Hong Zhang et al. Fluoropolymer Nanosheet as a Wrapping Mount for High-Quality Tissue Imaging, Advanced Materials (2017). DOI: 10.1002/adma.201703139

Related Stories

A microscope within a microscope

August 14, 2017

No single microscope can image all aspects of a sample at the same time and so the use of two or more imaging methods to study a sample - correlative imaging - is common-place.

Recommended for you

Weird superconductor leads double life

March 21, 2018

Until about 50 years ago, all known superconductors were metals. This made sense, because metals have the largest number of loosely bound "carrier" electrons that are free to pair up and flow as electrical current with no ...

Taming chaos: Calculating probability in complex systems

March 20, 2018

Daily weather patterns, brain activity on an EEG (electroencephalogram) and heartbeats on an EKG (electrocardiogram) each generate lines of complex data. To analyze this data, perhaps to predict a storm, seizure or heart ...

Shedding light on the mystery of the superconducting dome

March 20, 2018

University of Groningen physicists, and colleagues from Nijmegen and Hong Kong, have induced superconductivity in a monolayer of tungsten disulfide. By using an increasing electric field, they were able to show how the material ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.