Flaw detector for testing composite aircrafts

August 22, 2017
Thermal flaw prototype detector. Credit: Tomsk Polytechnic University

A thermal flaw detector developed at Tomsk Polytechnic University will be used in the manufacturing of a new aircraft to replace the AN-2. The new model fully consists of composite materials and is developed by the Siberian Aeronautical Research Institute S. A. Chaplygin (SibNIA), Novosibirsk, Russia.

The thermal flaw detector developed at TPU allows technicians to detect structural damage to both during manufacture and operation. The development involves an advanced set of data processing algorithms, including thermal tomography and defectometry. Recently, it was exhibited at the 13th International Aviation and Space Salon MAKS-2017.

"The aircraft is made of , mainly of carbon fiber reinforced plastic (CFRP). Manufacturers wanted to install non-destructive testing components for the construction of the aircraft. However, this caused some difficulties, since the methods established in Russia are mainly designed for metal structures. Conventional testing methods like X-rays are appropriate for metals, but they are either not suitable for composites at all, or suitable only for certain modifications. Therefore, the manufacturers faced a problem related to the testing methods they could put into the technological plan. The ultrasonic method will be used in any case, but apart from it specialists made a decision to use the thermal testing method developed at TPU," says laboratory head Vladimir Vavilov.

The operation of the TPU facility is based on the NDT infrared thermographic method for the detection of damage in composites used in the aerospace industry. Boeing, Airbus and Bombardier widely deploy this method, which is still not common in Russia.

"At MAKS, we presented a flaw detector mainly intended for the conditions of hangars (when panels are taken off from the aircraft) or for one-sided testing (directly on the aircraft itself). During production, there is an opportunity to turn panels, to put them optimally, to get them from the other side, and so on. Currently, we are designing a modular flaw that can be modified to meet production needs," says the scientist, adding that the exit trial of the method is planned for October 2017.

Explore further: Decreasing the mass of aircraft with polymer composites

Related Stories

Decreasing the mass of aircraft with polymer composites

February 9, 2017

Members of the Department of Chemistry of Lomonosov Moscow State University have created unique polymer matrices for polymer composites based on novel phthalonitrile monomers. The materials are stronger than metals, which ...

Virtual testing gives lightweight planes lift-off

December 14, 2009

Monash University aeronautical engineers are working with the world's leading aerospace company to fast-track the design and construction of a new generation of super lightweight and efficient passenger airplanes.

Recommended for you

Scientists write 'traps' for light with tiny ink droplets

October 23, 2017

A microscopic 'pen' that is able to write structures small enough to trap and harness light using a commercially available printing technique could be used for sensing, biotechnology, lasers, and studying the interaction ...

When words, structured data are placed on single canvas

October 22, 2017

If "ugh" is your favorite word to describe entering, amending and correcting data on the rows and columns on spreadsheets you are not alone. Coda, a new name in the document business, feels it's time for a change. This is ...

Enhancing solar power with diatoms

October 20, 2017

Diatoms, a kind of algae that reproduces prodigiously, have been called "the jewels of the sea" for their ability to manipulate light. Now, researchers hope to harness that property to boost solar technology.


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.