New composite technology for enhanced electrical and thermal conductivity of conventional composite materials

December 19, 2016

New technology that could enhance both the electrical and thermal conductivity of conventional composite materials has been developed thanks to a collaboration between the University of Surrey, University of Bristol and the aerospace company Bombardier.

Carbon fibre composites, composed of reinforcing carbon fibres within a plastic, have revolutionised industries that demand strong, yet light materials. However, their application has been hindered by inherently poor electrical and thermal conductivities.

New research, published in the journal Scientific Reports, demonstrates that by growing nanomaterials, specifically carbon nanotubes, on the surface of the carbon fibres it is possible to impart these necessary properties.

The research, conducted at the University of Surrey's Advanced Technology Institute (ATI) and the University of Bristol's Advanced Composite Centre for Innovation and Science (ACCIS), shows off the potential of a carbon fibre reinforced plastic to be made multifunctional, while still maintaining its structural integrity. Novel functionality including sensors, lighting and communication antennae can now be integrated into the structure of the composite to usher in a new era in composite technology.

Professor Ravi Silva, Director of the ATI and Head of the Nanoelectronics Centre (NEC) at the University of Surrey said: "In the future, modified carbon fibre composites could lead to exciting possibilities such as energy harvesting and storage structures with self-healing capabilities. We are currently working on such prototypes and have many ideas including the incorporation of current aerospace/satellite technology in automotive design."

Dr Thomas Pozegic, Research Associate in ACCIS and formerly a PhD student at the University of Surrey, explained: "The aerospace industry still relies on metallic structures, in the form of a copper mesh, to provide lightning strike protection and prevent static charge accumulation on the upper surface of carbon fibre composites because of the poor electrical conductivity. This adds weight and makes fabrication with carbon fibre composites difficult. The material that we have developed utilises high-quality carbon nanotubes grown at a high density to allow electrical transport throughout the material."

Dr Ian Hamerton, Reader in Polymers and Composite Materials in ACCIS, commented: "The research has shown that carbon nanotubes can significantly enhance the of fibre composites. This will have wide-reaching benefits in the aerospace industry, from enhancing de-icing solutions to minimising the formation of fuel vapours at cruising altitudes."

Explore further: Flying start for world's first graphene-enhanced aircraft

More information: T. R. Pozegic et al. Multi-Functional Carbon Fibre Composites using Carbon Nanotubes as an Alternative to Polymer Sizing, Scientific Reports (2016). DOI: 10.1038/srep37334

Related Stories

Flying start for world's first graphene-enhanced aircraft

November 28, 2016

Prospero, the first model aircraft to incorporate a graphene skinned wing, was successfully flown at the Farnborough International Air Show in the UK earlier this year. The flight sets an example of how graphene might be ...

Strengthening carbon fiber for vehicle use

June 17, 2014

Lighter-weight, fuel-efficient cars may be closer to reality thanks to Geelong researchers who are giving carbon fibre the gripping power it needs to be able to stand up to impacts from motorists.

Carbon fibre research seeds new innovation

May 28, 2014

A unique cutting-edge carbon fibre research facility Carbon Nexus officially opened at Deakin University in Geelong last week. It houses laboratories, a pilot scale carbon fibre line and a smaller single-tow research line.

Recommended for you

Breakthrough in ultra-fast data processing at nanoscale

October 20, 2017

A research team from the National University of Singapore has recently invented a novel "converter" that can harness the speed and small size of plasmons for high frequency data processing and transmission in nanoelectronics.

Art advancing science at the nanoscale

October 18, 2017

Like many other scientists, Don Ingber, M.D., Ph.D., the Founding Director of the Wyss Institute, is concerned that non-scientists have become skeptical and even fearful of his field at a time when technology can offer solutions ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.