Team reveals the whole genome sequences of rare red bat

July 17, 2017
M. rufoniger carcass, found in Gosudonggul cave, Danyang, in South Korea. Credit: UNIST

A recent study, affiliated with the Korean Genomics Industrialization and Commercialization Center (KOGIC) at South Korea's Ulsan National Institute of Science and Technology (UNIST) has presented the first whole genome sequence and analyses of the Myotis rufoniger, one of the most well-known and iconic protected wild animals in South Korea, known as the golden bat.

This breakthrough comes from a research, conducted by Professor Jong Bhak of Life Science at UNIST and Professor Doug-Young Ryu of Veterinary Medicine at Seoul National University in collaboration with the Korean Cultural Heritage Administration.

Recent studies have indicated that bats live longer than any other mammals of their sizes on earth. Myotis rufoniger is a species of vesper bat in the family Vespertilionidae. It is a rare bat species that face imminent threat of disappearance from the face of Earth. Being designated as a Korean natural monument No. 452, only 450 to 500 of these bats survive in the wild in South Korea, presently. The reseach team expects that this study will provide a genetic foundation for the restoration and conservation of the critically endangered M. rufoniger.

In their study, published in the July issue of the world's largest scholarly journal, PLOS ONE, the research team, led by Professor Bhak's research team provides a whole genome analysis of M. rufoniger by producing massively parallel short DNA sequences with its genomic features and unique amino acid sequences, accompanied by its and genetic diversity.

The genomic DNA from the wild carcass of M. rufoniger found in Gosudonggul cave, Danyang, in South Korea, was used in this study to investigate the demographic history of Myotis bats. The research team also investigated the genomic diversity of the M. rufoniger and compared it to those of the other 13 mammalian genomes (seven bat genomes and six other mammalian genomes).

Demographic history of Myotis bats. Credit: UNIST

The research team confirmed that these bats also have bat-specific sequences, which have already been published to be related to bat's delayed ovulation during hibernation, long lifespan, powered flight, echolocation, and low vision. Given bats' long lifespan, the genetic structure of M. rufoniger will contribute to a better understanding of human longevity.

Bats are typically brown or black in color, but they also occur in a variety of color schemes. In the study, the research team found specific genetic variations that are likely responsible for the M. rufoniger's rusty orange fur color, which distinguish it from the other bats. Moreover, they also found that an elemental analysis in the tissues from the M. rufoniger individual analyzed also showed a very high concentration of (As) in its intestinal tissue. This suggests an evolutionary correlation that M. rufoniger can survive in a cave, contained a high level of As.

A genome contains all of the genetic information of a given organism, including its evolutionary origins. The demographic history analysis in the present study found that the of the M. rufoniger was dramatically decreased during the latter part of the last glacial period. It is also shown that there was a consistent decline of Myotis bat family's effective population size since ~30 k years ago. In particular, M. rufoniger's effective population size was the lowest in Myotis bats, confirming its relatively low genetic diversity.

"The primary reason for the rapid decline in the population of bats is due to very recent human encroachment into and destruction of wildlife," said YoungJune Bhak, the lead author of the study. "Further studies are needed to determine if the declining bat populations in the present study is a bat-wide phenomenon, as well as to find out what are the possible ways to prevent the rapid decline in bat populations."

"Bats are one of the country's most valuable biological resources to humans, as they are biologically interesting as whales and also have a relatively long lifespan," says Professor Bahk. "We must turn these genomic data into usable information that improves individual and population health."

He adds, "We hope to unravel the basis for logevity by finding genetic loci associated with extreme logevity in bat genome, and further utilize it for cancer treatment and prolongation of human life."

Explore further: Blind as bats: Echolocation study reveals key evolutionary trade-offs with other senses

More information: Youngjune Bhak et al, Myotis rufoniger genome sequence and analyses: M. rufoniger's genomic feature and the decreasing effective population size of Myotis bats, PLOS ONE (2017). DOI: 10.1371/journal.pone.0180418

Related Stories

Nathusius and Soprano bats are attracted to green light

May 31, 2017

Some migratory bats are attracted to artificial green light which may interfere with their flight paths, according to a study published May 31, 2017 in the open-access journal PLOS ONE by Christian Voigt from the Leibniz ...

Recommended for you

The astonishing efficiency of life

November 17, 2017

All life on earth performs computations – and all computations require energy. From single-celled amoeba to multicellular organisms like humans, one of the most basic biological computations common across life is translation: ...

Unexpected finding solves 40-year old cytoskeleton mystery

November 17, 2017

Scientists have been searching for it for decades: the enzyme that cuts the amino acid tyrosine off an important part of the cell's skeleton. Researchers of the Netherlands Cancer Institute have now identified this mystery ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.