Lifetime simulation of biological populations reveals dramatic population fluctuations before extinction

July 12, 2017

Populations of endangered species reach a critical point in their life where they either survive or evolve towards extinction. Therefore, efforts to predict and even prevent the extinction of biological species require a thorough understanding of the underlying mechanisms. In a new study published in The European Physical Journal B, Hatem Barghathi and colleagues from Missouri University of Science and Technology, have investigated how environmental disturbance at random times could cause strong fluctuations in the number of individuals in biological populations. This, in turn, makes extinction easier, even for large populations. They found that environmental disorder can lead to a period of slow population increase interrupted by sudden population collapses. These findings also have implications for solving the opposite problem when attempting to predict, control and eradicate population of viruses in epidemics.

To model biological populations, they performed simulations using an agent-based model. The behaviour of populations that become extinct can be analysed using techniques from statistical physics. These help us to study transitions between a state where the population is active and fluctuates in number, and an inactive state where the population goes extinct.

The authors find that in the presence of time-dependent environmental disturbances, the average time for a biological population to become extinct grows only slowly with . This allows even large populations to become extinct quickly. In contrast, in time-independent environmental disturbances, large populations have very long lifetimes.

Barghathi and colleagues also found that when a biological population is close to the transition towards , the population undergoes periods of slow increase alternating with fluctuations leading to a sharp decrease in the number of individuals.

Explore further: Biologists say disappearance of species tells only part of the story of human impact on Earth's animals

More information: Hatem Barghathi et al, Extinction phase transitions in a model of ecological and evolutionary dynamics, The European Physical Journal B (2017). DOI: 10.1140/epjb/e2017-80220-7

Related Stories

Recommended for you

New technique accurately digitizes transparent objects

September 21, 2017

A new imaging technique makes it possible to precisely digitize clear objects and their surroundings, an achievement that has eluded current state-of-the-art 3D rendering methods. The ability to create detailed, 3D digital ...

Gravitational waves may oscillate, just like neutrinos

September 21, 2017

(Phys.org)—Using data from the first-ever gravitational waves detected last year, along with a theoretical analysis, physicists have shown that gravitational waves may oscillate between two different forms called "g" and ...

Detecting cosmic rays from a galaxy far, far away

September 21, 2017

In an article published today in the journal Science, the Pierre Auger Collaboration has definitively answered the question of whether cosmic particles from outside the Milky Way Galaxy. The article, titled "Observation of ...

Physicists publish new findings on electron emission

September 21, 2017

Even more than 100 years after Einstein's explanation of photoemission the process of electron emission from a solid material upon illumination with light still poses challenging surprises. In the report now published in ...

Rapid imaging of granular matter

September 21, 2017

Granular systems such as gravel or powders can be found everywhere, but studying them is not easy. Researchers at ETH Zurich have now developed a method by which pictures of the inside of granular systems can be taken ten ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.