Fossil site shows impact of early Jurassic's low oxygen oceans

July 15, 2017
Before the low oxygen period, bivalves were larger and more numerous. Credit: The University of Texas at Austin/Rowan Martindale

Using a combination of fossils and chemical markers, scientists have tracked how a period of globally low ocean-oxygen turned an Early Jurassic marine ecosystem into a stressed community inhabited by only a few species.

The research was led by Rowan Martindale, an assistant professor at The University of Texas at Austin Jackson School of Geosciences, and published in print in Palaeogeography, Palaeoclimatology, Palaeoeconology on July 15. The study was co-authored by Martin Aberhan, a curator at the Institute for Evolution and Biodiversity Science at the Natural History Museum in Berlin, Germany.

The study zeroes in on a recently discovered fossil site in Canada located at Ya Ha Tinda Ranch near Banff National Park in southwest Alberta. The site records fossils of organisms that lived about 183 million years ago during the Early Jurassic in a shallow sea that once covered the region.

The fossil site broadens the scientific record of the Toarcian Oceanic Anoxic Event, a period of low oxygen in shallow ocean waters which is hypothesized to be triggered by massive volcanic eruptions. The Oceanic Anoxic Event was identified at this site by the geochemical record preserved in the rocks. These geochemical data were collected in a previous research project led by Benjamin Gill and Theodore Them of Virginia Tech. The oxygen level of the surrounding environment during the Early Jurassic influences the type and amount of carbon preserved in rocks, making the geochemical record an important method for tracking an anoxic event.

"We have this beautiful geochemical record that gives us a backbone for the timing of the Oceanic Anoxic Event," said Martindale, a researcher in the Jackson School's Department of Geological Sciences. "So with that framework we can look at the benthic community, the organisms that are living on the bottom of the ocean, and ask 'how did this community respond to the anoxic event?"

The low oxygen environment affected the growth and number of bivalves, reducing their number and population. Credit: The University of Texas at Austin/Rowan Martindale

The fossils show that before the anoxic event, the Ya Ha Tinda marine community was diverse, and included fish, ichthyosaurs (extinct marine reptiles that looked like dolphins), sea lilies, lobsters, clams and oysters, ammonites, and coleoids (squid-like octopods). During the anoxic event the community collapsed, restructured, and the organisms living in it shrunk. The clams that were most abundant in the community before the anoxic event were completely wiped out and replaced by different species.

The clams that survived during and after the event were much smaller than the clams from before the event, suggesting that low oxygen levels limited their growth.

The sea life recorded at Ya Ha Tinda before and during the anoxic event is similar to fossils found at European sites. Crispin Little, a senior lecturer in paleontology at The University of Leeds who was not involved with the research, said that the similarity between the sites underscores the widespread nature of the anoxic event.

"This confirms previous work suggesting that the T-OAE (anoxic event) was genuinely a global event," Little said.

However, while other sites were recovering from the anoxic event, the environment at Ya Ha Tinda continued to face stress. Even for small, hardy bivalves, life was tough.

Fieldwork at Ya Ha Tinda Ranch, where the fossils were found. Credit: The University of Texas at Austin/Rowan Martindale

"One of the interesting things about the recovery [at Ya Ha Tinda] is that we actually see fewer individuals at a time when we're supposed to be seeing community recovery," Martindale said.

The fossils suggest that the environment was undergoing local stresses that kept oxygen low, Martindale said. More research is needed to untangle why life at Ya Ha Tinda didn't recover at the same rate as other places.

Since the oceanic anoxic event was a side-effect of climate change, looking back at ancient marine communities could be a window into the potential impacts of ongoing and future climate change, said co-author Martin Aberhan.

"One lesson we can learn from this study is that, on a human time scale, climate-related stresses can have very long-lasting effects, with no signs of recovery for hundred thousands of years, and that the communities before and after a climatic crises can look quite different in composition and ecological functioning," Aberhan said.

Explore further: Exceptionally preserved Jurassic sea life found in new fossil site

Related Stories

Recovery after 'great dying' was slowed by more extinctions

March 15, 2017

Researchers studying marine fossil beds in Italy have found that the world's worst mass extinction was followed by two other extinction events, a conclusion that could explain why it took ecosystems around the globe millions ...

Recommended for you

Rush hour pollution may be more dangerous than you think

July 21, 2017

The first in-car measurements of exposure to pollutants that cause oxidative stress during rush hour commutes has turned up potentially alarming results. The levels of some forms of harmful particulate matter inside car cabins ...

Mountain glaciers recharge vital aquifers

July 21, 2017

Small mountain glaciers play a big role in recharging vital aquifers and in keeping rivers flowing during the winter, according to a new study published in Geophysical Research Letters, a journal of the American Geophysical ...

4 comments

Adjust slider to filter visible comments by rank

Display comments: newest first

EmceeSquared
3.4 / 5 (5) Jul 15, 2017
See, the climate has changed before, a huge CO2 Greenhouse is normal, it's paradise on Earth!

If you're a T Rex, anyway. Which is Latin for "President Trump".
rrrander
1 / 5 (4) Jul 16, 2017
Life is always more plentiful and diverse in hot periods. Cold kills.
Da Schneib
5 / 5 (2) Jul 16, 2017
Ummm, @rrandom, you'll need to provide evidence that the Toarchian extinction was due to a "cold period." Otherwise you're just making up a stupid transparent lie because you're afraid of climate science.
Shootist
not rated yet Jul 16, 2017
End Periam? Wilkes Land Crater.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.