Color-shifting electronic skin could have wearable tech and prosthetic uses

July 25, 2017, Institute of Physics
This visualisation shows layers of graphene used for membranes. Credit: University of Manchester

The ability of some animals, including chameleons, octopus, and squid, to change their skin colour for camouflage, temperature control, or communication is well known.

While science has been able to replicate these abilities with artificial skin, the changes are often only visible to the naked eye when the material is put under huge mechanical strain.

Now, however, researchers in China have developed a new type of user-interactive electronic skin, with a colour change perceptible to the human eye, and achieved with a much-reduced level of strain. Their results could have applications in robotics, prosthetics and wearable technology.

Published today in the journal 2D Materials, the study from Tsinghua University in Beijing, employed flexible electronics made from , in the form of a highly-sensitive resistive strain sensor, combined with a stretchable organic electrochromic device.

Lead author Dr Tingting Yang, from Tsinghua University, said: "We explored the substrate (underlying) effect on the electromechanical behaviour of graphene. To obtain good performance with a simple process and reduced cost, we designed a modulus-gradient structure to use graphene as both the highly sensitive strain-sensing element and the insensitive stretchable electrode of the ECD layer.

(a) Device structure of the e-skin from the side view, left panel shows the optical image of the modulus-gradient PDMS. (b) 3D model of the e-skin. (c) Schematic of the circuit layout. Credit: 2D Materials (2017). DOI: 10.1088/2053-1583/aa78cc

"We found subtle strain - between zero and 10 per cent - was enough to cause an obvious colour change, and the RGB value of the colour quantified the magnitude of the applied strain."

Senior author Professor Hongwei Zhu said: "Graphene, with its high transparency, rapid carrier transport, flexibility and large specific surface area, shows application potential for flexible electronics, including stretchable electrodes, supercapacitor, sensors, and optical devices.

"However, our results also show that the mechanical property of the substrate was strongly relevant to the performance of the strain sensing materials. This is something that has previously been somewhat overlooked, but that we believe should be closely considered in future studies of the electromechanical behaviour of certain functional materials."

Dr Yang said: "It's important to note that the capability we found for interactive colour changes with such a small strain range has been rarely reported before. This user-interactive e-skin should be promising for applications in wearable devices, robots and prosthetics in the future."

Explore further: Crumpling approach enhances photodetectors' light responsivity

More information: Tingting Yang et al, Integration of graphene sensor with electrochromic device on modulus-gradient polymer for instantaneous strain visualization, 2D Materials (2017). DOI: 10.1088/2053-1583/aa78cc

Related Stories

Superstretchable, supercompressible supercapacitors

July 3, 2017

Flexible, wearable electronics require equally flexible, wearable power sources. In the journal Angewandte Chemie, Chinese scientists have introduced an extraordinarily stretchable and compressible polyelectrolyte which, ...

Stretchy supercapacitors power wearable electronics

August 23, 2016

A future of soft robots that wash your dishes or smart T-shirts that power your cell phone may depend on the development of stretchy power sources. But traditional batteries are thick and rigid—not ideal properties for ...

Recommended for you

Atomic-scale manufacturing now a reality

May 23, 2018

Scientists at the University of Alberta have applied a machine learning technique using artificial intelligence to perfect and automate atomic-scale manufacturing, something which has never been done before. The vastly greener, ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.