Volcanic eruptions triggered dawn of the dinosaurs

June 19, 2017
Image of fossilized dinosaur eggs found in India, currently displayed at Indroda Fossil Park, Gandhinagar, Gujarat INDIA. Image credit: Wikimedia Commons

Huge pulses of volcanic activity are likely to have played a key role in triggering the end Triassic mass extinction, which set the scene for the rise and age of the dinosaurs, new Oxford University research has found.

The Triassic extinction took place approximately 200 million years ago, and was proceeded by the dinosaur era. One of the largest mass extinctions of animal life on record, the casualty list includes large crocodile-like reptiles and several marine invertebrates. The event also caused huge changes in land vegetation, and while it remains a mystery why the dinosaurs survived this event, they went on to fill the vacancies left by the now extinct wildlife species, alongside early mammals and amphibians. This mass extinction has long been linked to a large and abrupt release of carbon dioxide into the atmosphere, but the exact source of this has been unknown.

Following the discovery of volcanic rocks of the same age as the extinction, volcanic carbon dioxide (CO2) emissions had previously been suggested as an important contributor to this . Previous studies have also shown that this volcanism might have occurred in pulses, but the global extent and potential impact of these volcanic episodes has remained unknown. These covered a huge area, across four continents, representing the Central Atlantic Magmatic Province (CAMP).

Researchers from the Oxford University Department of Earth Science worked in collaboration with the Universities of Exeter and Southampton to trace the global impact of major volcanic gas emissions and their link to the end of the Triassic period. The findings link volcanism to the previously observed repeated large emissions of carbon dioxide that had a profound impact on the global climate, causing the mass extinction at the end of the Triassic Period, as well as slowing the recovery of animal life afterwards.

By investigating the mercury content of sedimentary rocks deposited during the extinction, the study findings revealed clear links in the timing of CAMP volcanism and the end-Triassic extinction. Volcanoes give off mercury gas emissions, which spread globally through the atmosphere, before being deposited in sediments. Any sediments left during a large volcanic event would therefore be expected to have unusually high mercury content.

The team sourced six sediment deposits were sourced from the UK, Austria, Argentina, Greenland, Canada and Morocco, and their mercury levels analysed. Five of the six records showed a large increase in beginning at the end-Triassic extinction horizon, with other peaks observed between the extinction horizon and the Triassic-Jurassic boundary, which occurred approximately 200 thousand years later.

Elevated mercury emissions also coincided with previously established increases in atmospheric CO2 concentrations, indicating CO2 release from volcanic degassing.

Lawrence Percival, Lead author and Geochemistry Graduate student at Oxford University, said: "These results strongly support repeated episodes of at the end of the Triassic, with the onset of volcanism during the end-Triassic extinction.

"This research greatly strengthens the link between the Triassic mass extinction and of CO2. This further evidence of episodic emissions of volcanic CO2 as the likely driver of the enhances our understanding of this event, and potentially of other climate change episodes in Earth's history."

The full paper features in the journal Proceedings of the National Academy of Sciences.

Explore further: Large volcanic eruption may have caused the first mass extinction

More information: Lawrence M. E. Percival el al., "Mercury evidence for pulsed volcanism during the end-Triassic mass extinction," PNAS (2017). www.pnas.org/cgi/doi/10.1073/pnas.1705378114

Related Stories

Volcanoes as referees for life on Earth

June 1, 2017

At the Triassic-Jurassic boundary, 200 million years ago, some 60 percent of species living on Earth disappeared. Scientists suspected that magmatic activity and the release of CO2 were responsible for this environmental ...

Recommended for you

Hot spot at Hawaii? Not so fast

August 18, 2017

Through analysis of volcanic tracks, Rice University geophysicists have concluded that hot spots like those that formed the Hawaiian Islands aren't moving as fast as recently thought.

Supervolcanoes: A key to America's electric future?

August 16, 2017

Most of the lithium used to make the lithium-ion batteries that power modern electronics comes from Australia and Chile. But Stanford scientists say there are large deposits in sources right here in America: supervolcanoes.

Greenland ice flow likely to speed up

August 16, 2017

Flow of the Greenland Ice Sheet is likely to speed up in the future, despite a recent slowdown, because its outlet glaciers slide over wet sediment, not hard rock, new research based on seismic surveys has confirmed. This ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.