A unique data center for cosmological simulations

June 20, 2017
Visualizations of the simulated distributions of gas and stars in the Universe from data provided by Cosmowebportal: The cube represents a space section of the Universe (more than 300 million light years), the bright spots on the cube faces show galaxies and galaxy clusters along the cosmic web. The first two disks zoom into the central galaxy cluster, the third disk (far right) demonstrates how an observation of the zoom area would look with an X-ray telescope ('virtual telescope'). Credit: P. Baintner u. H. Bruechle, LRZ

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have established 'Cosmowebportal', a unique data center for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe's galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the exact measurement of the (CMB) with the Planck space observatory and many other measurements for example with the Hubble space telescope, the scientists were able to develop a precise model of our Universe. However, little is yet known about how these structures could form from the distribution of matter in the early .

In order to answer this question, theoretical astrophysicists work with cosmological, hydrodynamical simulations. They test their hypotheses about the universe by developing mathematical models that describe the underlying complex physical processes and run them on high-performance computers trying to reproduce the evolution of the Universe over billions of years. If the underlying assumptions are correct, the simulations should match the current astronomical observations and findings.

A group of astrophysicists led by Dr. Klaus Dolag from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich in close collaboration with the LRZ have now initiated "Cosmowebportal". This unique data centre for cosmological simulations provides access to the results of the world's most extensive set of cosmological hydrodynamic simulations, Magneticum Pathfinder, also developed by Klaus Dolag's team and carried out at the LRZ.

The complete simulations are saved at the LRZ in Garching on a data store for large datasets, which is connected to the supercomputer SuperMUC. Using a web interface, interested scientists can, for example, select objects from the raw data, process it, and even create virtual observations mimicing existing or future space telescopes.

"Large astronomical projects such as the space telescopes Euclid or eRosita, which are to be launched in the next few years, will observe large areas of the Universe, as well as provide further insight into the evolution of the first structures of the Universe so that the significance of cosmological hydrodynamic simulations will even increase in future," says Klaus Dolag. "A data centre that pools and makes these simulations available therefore is an important facility for scientists working in the field."

Explore further: Magneticum Pathfinder: Evolution of the universe in an unmatched precision

More information: A. Ragagnin et al, A web portal for hydrodynamical, cosmological simulations, Astronomy and Computing (2017). DOI: 10.1016/j.ascom.2017.05.001

Related Stories

Exploring the dark universe at the speed of petaflops

November 21, 2013

An astonishing 95% of our universe is made of up dark energy and dark matter. Understanding the physics of this sector is the foremost challenge in cosmology today. Sophisticated simulations of the evolution of the universe ...

Cosmology: Lore of lonely regions

August 16, 2016

A research group led by Ludwig-Maximilians-Unversitaet (LMU) in Munich physicist Nico Hamaus is calculating the dynamics of cosmic voids and deriving new insights into our entire universe.

Team simulates the expansion of the Universe

March 7, 2016

The Universe is constantly expanding. It changes, creating new structures that merge. But how does our Universe evolve? Physicists at the University of Geneva (UNIGE), Switzerland, have developed a new code of numerical simulations ...

Cosmological simulations key to understanding the universe

February 17, 2009

Tiziana Di Matteo, associate professor of physics at Carnegie Mellon University is harnessing the power of supercomputing to recreate how galaxies are born, how they develop over time and, ultimately, how they collapse.

Recommended for you

Orbital mayhem around a red dwarf

December 18, 2017

In the collective imagination, planets of a solar system all circle in the equatorial plane of their star. The star also spins, and its spin axis is aligned with the spin axes of the planetary orbits, giving the impression ...

Mars and Earth may not have been early neighbors

December 18, 2017

A study published in the journal Earth and Planetary Science Letters posits that Mars formed in what today is the Asteroid Belt, roughly one and a half times as far from the sun as its current position, before migrating to ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.