What happened before the Big Bang?

A team of scientists has proposed a powerful new test for inflation, the theory that the universe dramatically expanded in size in a fleeting fraction of a second right after the Big Bang. Their goal is to give insight into ...

New 3-D map will help solve long-standing cosmic mysteries

A new study led by ANU has created a 3D map of the magnetic field in a small wedge of the Milky Way galaxy, paving the way for future discoveries that will improve our understanding of the origin and evolution of the Universe.

Active galaxies point to new physics of cosmic expansion

Investigating the history of our cosmos with a large sample of distant 'active' galaxies observed by ESA's XMM-Newton, a team of astronomers found there might be more to the early expansion of the universe than predicted ...

From an almost perfect universe to the best of both worlds

It was 21 March 2013. The world's scientific press had either gathered in ESA's Paris headquarters or logged in online, along with a multitude of scientists around the globe, to witness the moment when ESA's Planck mission ...

page 1 from 20

Cosmic microwave background radiation

In cosmology, cosmic microwave background (CMB) radiation (also CMBR, CBR, MBR, and relic radiation) is a form of electromagnetic radiation filling the universe. With a traditional optical telescope, the space between stars and galaxies (the background) is pitch black. But with a radio telescope, there is a faint background glow, almost exactly the same in all directions, that is not associated with any star, galaxy, or other object. This glow is strongest in the microwave region of the radio spectrum, hence the name cosmic microwave background radiation. The CMB's discovery in 1964 by radio astronomers Arno Penzias and Robert Wilson was the culmination of work initiated in the 1940s, and earned them the 1978 Nobel Prize.

The CMBR is well explained by the Big Bang model – when the universe was young, before the formation of stars and planets, it was smaller, much hotter, and filled with a uniform glow from its white-hot fog of hydrogen plasma. According to the model, the radiation from the sky we measure today comes from a spherical surface called the surface of last scattering. As the universe expanded, both the plasma and the radiation filling it grew cooler. When the universe cooled enough, stable atoms could form. These atoms could no longer absorb the thermal radiation, and the universe became transparent instead of being an opaque fog. The photons that were around at that time have been propagating ever since, though growing fainter and less energetic, since the exact same photons fill a larger and larger universe. This is the source for the term relic radiation, another name for the CMBR.

Precise measurements of cosmic background radiation are critical to cosmology, since any proposed model of the universe must explain this radiation. The CMBR has a thermal black body spectrum at a temperature of 2.725 K, thus the spectrum peaks in the microwave range frequency of 160.2 GHz, corresponding to a 1.9 mm wavelength. The glow is almost but not quite uniform in all directions, and shows a very specific pattern equal to that expected if the inherent randomness of a red-hot gas is blown up to the size of the universe. In particular, the spatial power spectrum (how much difference is observed versus how far apart the regions are on the sky) contains small anisotropies, or irregularities, which vary with the size of the region examined. They have been measured in detail, and match what would be expected if small thermal fluctuations had expanded to the size of the observable space we can detect today. This is still a very active field of study, with scientists seeking both better data (for example, the Planck spacecraft ) and better interpretations of the initial conditions of expansion.

Although many different processes might produce the general form of a black body spectrum, no model other than the Big Bang has yet explained the fluctuations. As a result, most cosmologists consider the Big Bang model of the universe to be the best explanation for the CMBR.

This text uses material from Wikipedia, licensed under CC BY-SA