Scientists demonstrate microwave spectrometer tailored for the Majorana quest

June 6, 2017, Delft University of Technology
Credit: Delft University of Technology

The quest for Majorana particles as building blocks for a future computer is on since the first observation of these particles in Delft in 2012. Due to their physical properties, a quantum bit based on them is protected from errors. Experimentally, however, the control and realization of Majorana states are very challenging. An international team of scientists, led by Attila Geresdi at QuTech has now demonstrated a new technology enabling more reliable characterization for future control of Majorana particles. They publish their work in Nature Physics.

The Majorana states, exotic quantum particles, only exist under very specific circumstances. While theoretically proposed in 1938, they were observed for the first time in a solid state chip by the group of Leo Kouwenhoven in 2012. 'The key ingredient is a nanowire covered by a superconducting layer', explains Attila Geresdi, leading researcher of the current study. These particles are the of topological quantum computation, a promising direction in that is pursued by several research groups around the globe in collaboration with Microsoft.

'Most current studies of Majorana states rely on measuring the electron flow through the nanowire. This however inevitably destroys the encoded in these particles,' Geresdi explains. The Delft group collaborated with an international group of researchers. Scientists from Yale University provided theoretical understanding of the very specific devices made from the ultra-clean nanowires fabricated in Copenhagen. Researchers in Delft combined the nanowires with an on-chip spectrometer to demonstrate a measurement method not disturbing the Majorana's.

'In the future quantum computer, you want every operation to be correct,' says Geresdi, 'the topological quantum bits are intrinsically protected from errors, which means that if you perform a quantum operation, it always works.' There are still great hurdles on the road towards quantum computing based on Majorana particles, but this work opens doors to a new regime of quantum experiments. Geresdi: 'both fundamental physics and technological challenges towards the control of Majorana states can be explored using our new methods.'

Explore further: Scientists discover particles similar to Majorana fermions

More information: David J. van Woerkom et al. Microwave spectroscopy of spinful Andreev bound states in ballistic semiconductor Josephson junctions, Nature Physics (2017). DOI: 10.1038/nphys4150

Related Stories

Scientists discover particles similar to Majorana fermions

October 25, 2016

Majorana fermions were first proposed by the physicist Ettore Majorana in 1937. They are fermion particles that are also their own antiparticles. These fermions are vital to the research of superconducting materials and topological ...

Protected Majorana states for quantum information

March 9, 2016

Quantum technology has the potential to revolutionize computation, cryptography, and simulation of quantum systems. However, quantum physics places a new demand on information processing hardware: quantum states are fragile, ...

Quantum scientists break aluminium 'monopoly' (Update)

May 25, 2015

A Majorana fermion, or a Majorana particle, is a fermion that is its own antiparticle. Discovering the Majorana was the first step, but utilizing it as a quantum bit (qubit) still remains a major challenge. An important step ...

Recommended for you

New study explores cell mechanics at work

June 19, 2018

It's a remarkable choreography. In each of our bodies, more than 37 trillion cells tightly coordinate with other cells to organize into the numerous tissues and organs that make us tick.

The secret to measuring the energy of an antineutrino

June 18, 2018

Scientists study tiny particles called neutrinos to learn about how our universe evolved. These particles, well-known for being tough to detect, could tell the story of how matter won out over antimatter a fraction of a second ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.