Scientists demonstrate microwave spectrometer tailored for the Majorana quest

Scientists demonstrate microwave spectrometer tailored for the Majorana quest
Credit: Delft University of Technology

The quest for Majorana particles as building blocks for a future computer is on since the first observation of these particles in Delft in 2012. Due to their physical properties, a quantum bit based on them is protected from errors. Experimentally, however, the control and realization of Majorana states are very challenging. An international team of scientists, led by Attila Geresdi at QuTech has now demonstrated a new technology enabling more reliable characterization for future control of Majorana particles. They publish their work in Nature Physics.

The Majorana states, exotic quantum particles, only exist under very specific circumstances. While theoretically proposed in 1938, they were observed for the first time in a solid state chip by the group of Leo Kouwenhoven in 2012. 'The key ingredient is a nanowire covered by a superconducting layer', explains Attila Geresdi, leading researcher of the current study. These particles are the of topological quantum computation, a promising direction in that is pursued by several research groups around the globe in collaboration with Microsoft.

'Most current studies of Majorana states rely on measuring the electron flow through the nanowire. This however inevitably destroys the encoded in these particles,' Geresdi explains. The Delft group collaborated with an international group of researchers. Scientists from Yale University provided theoretical understanding of the very specific devices made from the ultra-clean nanowires fabricated in Copenhagen. Researchers in Delft combined the nanowires with an on-chip spectrometer to demonstrate a measurement method not disturbing the Majorana's.

'In the future quantum computer, you want every operation to be correct,' says Geresdi, 'the topological quantum bits are intrinsically protected from errors, which means that if you perform a quantum operation, it always works.' There are still great hurdles on the road towards quantum computing based on Majorana particles, but this work opens doors to a new regime of quantum experiments. Geresdi: 'both fundamental physics and technological challenges towards the control of Majorana states can be explored using our new methods.'


Explore further

Scientists discover particles similar to Majorana fermions

More information: David J. van Woerkom et al. Microwave spectroscopy of spinful Andreev bound states in ballistic semiconductor Josephson junctions, Nature Physics (2017). DOI: 10.1038/nphys4150
Journal information: Nature Physics

Citation: Scientists demonstrate microwave spectrometer tailored for the Majorana quest (2017, June 6) retrieved 27 November 2020 from https://phys.org/news/2017-06-scientists-microwave-spectrometer-tailored-majorana.html
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.
522 shares

Feedback to editors

User comments