Making waves with the hot electrons within Earth's radiation belts

June 20, 2017, American Institute of Physics
Credit: CC0 Public Domain

Encircling the Earth, within its magnetosphere, are two concentric, doughnut-shaped radiation belts known as the Van Allen belts. The Van Allen belts swell and recede in response to incoming energy from the sun, sometimes billowing far enough to expose orbiting satellites and other spacecraft to damaging radiation that can disrupt electronic communications and navigation signals, as well as electric grids. These radiation belt electrons travel near the speed of light and emit and absorb waves that are used by scientists to understand space weather.

An international team of scientists recently discovered the role that hot electrons may play in the waves and fluctuations detected by satellites. The research team reports its findings this week in Physics of Plasmas. Their results are based on data collected by the Van Allen Probes, twin robotic spacecraft launched by NASA in 2012 to help scientists better understand these belt regions.

Previous research has focused on low-frequency electromagnetic waves emitted from cold electrons as the major cause of acceleration and loss of relativistic electrons. These wave-particle interactions directly affect the width of the bands. Low-frequency waves include whistler-mode plasma waves, so named for the hissing or static sound they make that is audible through a speaker.

This general theory describes electrons from solar wind interacting with these low-frequency plasma waves. This causes the electrons to gain a tremendous amount of energy from the amplification of the whistler-mode waves via the surrounding plasmasphere.

However, according to the research team, low-frequency waves are typically associated with active magnetospheric conditions, which don't always occur. In contrast, high-frequency quasi-electrostatic (ES) fluctuations in the upper-hybrid frequency are a constant and pervasive feature in the Earth's radiation belt environment, as was recently discovered through new data from the Van Allen Probes.

"Occasional low-frequency waves with extremely large amplitudes may suddenly accelerate the electrons," said Junga Hwang, principal researcher at the Korea Astronomy and Space Science Institute in South Korea and a co-author of the paper. "But we believe that it is the high-frequency ES fluctuations that are constantly emitted and reabsorbed by the hot electrons, which allow these radiation belt electrons to remain inside the outer Van Allen band for a long time."

In their study, the researchers looked at electrons at three energy ranges: cold electrons, hot electrons and relativistic electrons. Cold electrons mainly contribute to the background electron density. Hot electrons are known as the main source for wave making. The , meanwhile, result from particle acceleration processes, but they don't influence average plasma characteristics. The researchers chose "quiet-time" intervals to study the high-frequency waves when the low-frequency plasma waves were absent.

"Since hot electrons constitute only a small fraction of the total electron number density, the general thought has been that the upper-hybrid fluctuations are useful only as a tool for indirectly measuring the cold electron number density," Hwang said. "However, the data from the Van Allen Probes showed that upper-hybrid ES (electrostatic) fluctuations pervasively and ubiquitously exist in the belts. From there, we proved that the presence of and upper-hybrid fluctuations are mutually related phenomenon."

Explore further: Study explores wave-particle interaction in atmosphere

More information: J. Hwang et al, Roles of hot electrons in generating upper-hybrid waves in the earth's radiation belt, Physics of Plasmas (2017). DOI: 10.1063/1.4984249

Related Stories

Research resolves a debate over 'killer electrons' in space

September 28, 2016

New findings by a UCLA-led international team of researchers answer a fundamental question about our space environment and will help scientists develop methods to protect valuable telecommunication and navigation satellites. ...

Recommended for you

How a particle may stand still in rotating spacetime

May 25, 2018

When a massive astrophysical object, such as a boson star or black hole, rotates, it can cause the surrounding spacetime to rotate along with it due to the effect of frame dragging. In a new paper, physicists have shown that ...

Long live the doubly charmed particle

May 25, 2018

Finding a new particle is always a nice surprise, but measuring its characteristics is another story and just as important. Less than a year after announcing the discovery of the particle going by the snappy name of Ξcc++ (Xicc++), ...

How can you tell if a quantum memory is really quantum?

May 23, 2018

Quantum memories are devices that can store quantum information for a later time, which are usually implemented by storing and re-emitting photons with certain quantum states. But often it's difficult to tell whether a memory ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.