Cotton candy capillaries lead to circuit boards that dissolve when cooled

June 27, 2017 by Heidi Hall

Building transient electronics is usually about doing something to make them stop working: blast them with light, soak them with acid, dunk them in water.

Professor Leon Bellan's idea is to dissolve them with neglect: Stop applying heat, and they come apart.

Using silver nanowires embedded in a polymer that dissolves in water below 32 degrees Celsius—between body and room temperature—Bellan and mechanical engineering graduate student Xin Zhang made a simple circuit board that, so far, just turns on an LED light. Its potential applications are far more promising. "Let's say you use this technology to make an RFID wireless tag," said Bellan, assistant professor of mechanical and biomedical engineering at Vanderbilt University. "You could implant important information in a person, and body temperature would keep it intact. If the tag were removed or the bearer died, it would dissolve. You could use it for implanted medical devices as well - to cause them to disintegrate, it would only require applying ice to the skin."

In the lab, his tiny circuit boards stay operational in water warmed by a hot plate. Turn off the hot plate, and they start dissolving in minutes.

The duo's paper, available online and soon to be published in the journal ACS Applied Materials and Resources, represents an application of technology Bellan developed last year. Using a special polymer and a cotton candy machine purchased from a department store, he spun networks of threads comparable in size, density and complexity to capillaries - the tiny conduits that deliver oxygen and nutrients to cells.

Bellan's cotton candy-like fiber networks can be embedded in materials that mimic the extracellular matrix and then be triggered to dissolve away, potentially producing capillary systems for artificial organs. He's using the same triggering system to produce .

In this system, the are held together in the polymer so that they touch, and as long as the polymer doesn't dissolve, the nanowires will form a path to conduct electricity similar to the traces on a circuit board. Trigger the to dissolve by lowering the temperature, and the nanowire network disintegrates, destroying the conductive path.

"Transient electronics are cool, and once you start coupling that to a stimulus-responsive material, you start coming up with really sci-fi ideas," Bellan said. "You could have any cascade of events that results in a very unique stimulus that causes it to degrade or prevent it from falling apart. Temperature is just the beginning."

The next steps are integrating semiconductors to make transistors and ensuring users can interact wirelessly with the device.

Explore further: Video: Cotton candy machine used to regrow human tissue

More information: Xin Zhang et al, Composites Formed from Thermoresponsive Polymers and Conductive Nanowires for Transient Electronic Systems, ACS Applied Materials & Interfaces (2017). DOI: 10.1021/acsami.7b04748

Related Stories

Recommended for you

Cheap, sustainable battery made from tree bark tannins

December 18, 2017

(Phys.org)—Tannins may be best known for their presence in red wine and tea, but in a new study researchers have demonstrated for the first time that tannins from tree bark can also serve as battery cathode materials. As ...

Designer nanoparticles destroy a broad array of viruses

December 18, 2017

Viral infections kill millions of people worldwide every year, but currently available antiviral drugs are limited in that they mostly act against one or a small handful of related viruses. A few broad-spectrum drugs that ...

Nanotubes go with the flow to penetrate brain tissue

December 18, 2017

Rice University researchers have invented a device that uses fast-moving fluids to insert flexible, conductive carbon nanotube fibers into the brain, where they can help record the actions of neurons.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.