The anatomy of Orion

June 19, 2017
A false-color radio image of the molecular cloud complex in Orion-B, showing the distribution of molecular carbon monoxide (CO) gas in three different isotopes: blue shows the normal isotopes (C_12 and O_16), green shows carbon_13, and red shows oxygen_18. The Horsehead nebula can be clearly seen at the right. Credit: Pety et al.

The Orion molecular cloud is a large complex of hot young stars, nebulae, and dark clouds of gas and dust located in the constellation of Orion. Two particularly famous sights in the night sky, the Orion Nebula and the Horsehead Nebula, are members of this complex, which is relatively nearby, only about 1500 light-years away. Despite its fame, brightness, and relative proximity, however, this complex is not very well understood. Take its star formation, for instance. The relative roles of the local versus galactic-wide conditions are poorly modeled, in particular the contributions of small-scale processes like magnetic fields and turbulence as compared to larger scale activity like gas pressure or the streaming motions of gas within the galaxy's spiral arms. One reason for this lack of understanding is that the nebula is densely packed with stars and activity while its dust obscures many of the regions from optical view.

CfA astronomers Viviana Guzman and Karin Oberg were part of a team of fourteen astronomers who used the IRAM millimeter telescope to map the Orion-B giant molecular cloud (GMC), located in this complex, over nearly a full degree in the emission from over a dozen molecular lines (for comparison, the angular size of the moon is about one-half a degree). Orion-B is a typical GMC and is useful as a template for other GMCs elsewhere in the Milky Way and in other galaxies. There are a wide range of conditions found in this large region (about 25 light-years in size) and so the scientists are able to obtain a statistically significant breakdown of the region's activities. One of the key questions the astronomers want to resolve by measuring both small and large-scale gas properties in this example is the linear scale needed to correctly derive star formation characteristics. In extragalactic studies of , small scale measurements are usually not possible: to what extent are the interpretations of emission line ratios, for example, therefore suspect?

The astronomers' study of the molecular anatomy of this complex reveals the detailed relationships between the gas and dust, and quantifies how the spatially varying intensities of the molecular lines reveal the physical conditions. The visual extinction varies with location with values ranging from almost none to nearly opaque even at long infrared wavelengths. The team reports that the amount of molecular gas in any location correlates closely with the extinction, consistent with the picture that more extinction means more dust and thus also more gas. They also find a correlation with the illumination by ultraviolet light from massive young at the edges of the map, but no simple correlation between the gas densities and the fraction of radiated light. The paper concludes that the relationships between the line emission and the GMC environment are more complicated than usually assumed, emphasizing (for example) the importance of local chemistry in determining the intensities of the emission here, and in other galaxies.

Explore further: Understanding star-forming galaxies

More information: Jérôme Pety et al. The anatomy of the Orion B giant molecular cloud:A local template for studies of nearby galaxies, Astronomy & Astrophysics (2017). DOI: 10.1051/0004-6361/201629862

Related Stories

Understanding star-forming galaxies

June 5, 2017

The more stars a typical spiral galaxy contains, the faster it makes new ones. Astronomers call this relatively tight correlation the "galaxy main sequence." The main sequence might be due simply to the fact that galaxies ...

Hidden secrets of Orion's clouds

January 4, 2017

This spectacular new image is one of the largest near-infrared high-resolution mosaics of the Orion A molecular cloud, the nearest known massive star factory, lying about 1350 light-years from Earth. It was taken using the ...

New Hubble mosaic of the Orion Nebula

March 17, 2017

In the search for rogue planets and failed stars astronomers using the NASA/ESA Hubble Space Telescope have created a new mosaic image of the Orion Nebula. During their survey of the famous star formation region, they found ...

VISTA peeks through the Small Magellanic Cloud's dusty veil

May 3, 2017

VISTA's infrared capabilities have now allowed astronomers to see the myriad of stars in the Small Magellanic Cloud galaxy much more clearly than ever before. The result is this record-breaking image—the biggest infrared ...

Atacama Pathfinder Experiment: Setting the dark on fire

January 23, 2013

(—A new image from the Atacama Pathfinder Experiment (APEX) telescope in Chile shows a beautiful view of clouds of cosmic dust in the region of Orion. While these dense interstellar clouds seem dark and obscured ...

Recommended for you

Four new short-period giant planets discovered

July 26, 2017

(—Astronomers have detected four new giant exoplanets as part of the Hungarian-made Automated Telescope Network-South (HATSouth) exoplanet survey. The newly found alien worlds are about the size of Jupiter, but ...

Large, distant comets more common than previously thought

July 25, 2017

Comets that take more than 200 years to make one revolution around the sun are notoriously difficult to study. Because they spend most of their time far from our area of the solar system, many "long-period comets" will never ...

Saturn surprises as Cassini continues its grand finale

July 24, 2017

As NASA's Cassini spacecraft makes its unprecedented series of weekly dives between Saturn and its rings, scientists are finding—so far—that the planet's magnetic field has no discernable tilt. This surprising observation, ...

Mapping dark matter

July 24, 2017

About eighty-five percent of the matter in the universe is in the form of dark matter, whose nature remains a mystery. The rest of the matter in the universe is of the kind found in atoms. Astronomers studying the evolution ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.