Data analysis could trigger new shale gas revolution

May 9, 2017
Los Alamos applies its expertise in data analysis and high-performance computing to study oil and gas production as part of its mission to enhance the nation’s energy security. Credit: Los Alamos National Laboratory

Extensive data mining and analysis of 20,000 shale gas wells has revealed how "refracturing" existing wells with new technology could transform them from diminished producers into high-performers long after their initial peak production period has ended.

"Our could potentially aid in reducing the number of new wells to be drilled," said Richard Middleton, lead author of the study by a team of Los Alamos National Laboratory scientists. "In addition, through better fracturing techniques and alternative working fluids such as supercritical carbon dioxide, we see ways to both increase recovery and minimize environmental impacts through carbon sequestration," he said.

The analysis, reviewing 23 years of production from 20,000 wells, identifies key discoveries, lessons learned and recommendations for greatly improving "tail production," that is, the long-term production after the initial peak production of a well.

Los Alamos applies its expertise in data analysis and high-performance computing to study oil and gas production as part of its mission to enhance the nation's energy security.

"We hypothesize that manipulating tail production could re-revolutionize ," he said. Shale gas production through is characterized by substantial gas production in the first few months to a year, but the production exponentially declines after only a month or two. Tail production starts about 12 months after this initial exponential decline. "Hydraulic fracturing research has largely focused on the initial 12-month production, since an operator will break even and make a profit from this 'exponential' production. However, in the paper, we try to emphasize the importance and value of this long-term, tail production," Middleton said.

The data mining analysis revealed that "refracturing" existing wells with new technology can transform them into high-performing wells with the production characteristics of a newly drilled site. The paper in Applied Energy notes that this observation has profound implications in the potential revitalization of the hundreds of thousands of shale gas wells across the United States.

"Refracturing existing wells drastically reduces environmental impacts by using the existing footprint. Refracturing could be particularly important because our research shows that older fracturing technologies leave behind a greater amount of shale gas resources than more modern techniques," the paper notes.

In addition, the longer use of existing wells is cost effective, the authors point out. Restimulating an existing well eliminates the capital cost of a new well, while providing a smaller environmental footprint.

Explore further: Can fluids from fracking escape into groundwater

More information: The shale gas revolution: barriers, sustainability, and emerging opportunities, DOI: 10.1016/j.apenergy.2017.04.034

Related Stories

Analysis of fracking wastewater yields some surprises

January 22, 2013

Hydraulically fractured natural gas wells are producing less wastewater per unit of gas recovered than conventional wells would. But the scale of fracking operations in the Marcellus shale region is so vast that the wastewater ...

How much water does US fracking really use?

September 15, 2015

Energy companies used nearly 250 billion gallons of water to extract unconventional shale gas and oil from hydraulically fractured wells in the United States between 2005 and 2014, a new Duke University study finds.

Recommended for you

2020 deadline to avert climate catastrophe: experts

June 28, 2017

Humanity must put carbon dioxide emissions on a downward slope by 2020 to have a realistic shot at capping global warming at well under two degrees Celsius, the bedrock goal of the Paris climate accord, experts said Wednesday.

Concurrent hot and dry summers more common in future: study

June 28, 2017

A combination of severe drought and a heatwave caused problems for Russia in the summer of 2010: fires tore through forests and peat bogs. Moscow was shrouded in thick smog, causing many deaths in the local population. At ...

Climate change impacts Antarctic biodiversity habitat

June 28, 2017

Ice-free areas of Antarctica - home to more than 99 per cent of the continent's terrestrial plants and animals - could expand by more than 17,000km2 by the end of this century, a study published today in Nature reveals.

The common insecticide poisoning our rivers and wetlands

June 28, 2017

Urban streams and wetlands play an important role in the proper functioning of our cities. They protect our houses from floods, provide green spaces for recreation, trap and breakdown pollutants and provide valuable habitats ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.