New sensor devices recycle atoms

April 12, 2017
New sensor devices recycle atoms
The atom interferometer uses the quantum ‘wave-like’ nature of atoms to make precise measurements. Credit: University of Queensland

Next-generation sensors to be used in fields as diverse as mineral exploration and climate change will be turbo boosted thanks to University of Queensland and University of Sussex research.

Theoretical physicist Dr Stuart Szigeti, of UQ's School of Mathematics and Physics, said future precision sensing technology would exploit unusual effects of quantum mechanics.

"Our research showed a way to recycle and reuse them in a device called an atom interferometer," Dr Szigeti said.

"This technique will vastly improve the performance of these devices, leading to improved sensing technology.

"An uses the quantum 'wave-like' nature of atoms in order to make very precise measurements of accelerations, rotations, and gravitational fields"

Dr Szigeti, who works within one of five nodes of the Australian Research Council Centre for Engineered Quantum Systems, said the devices would have applications on land and sea.

"They can be used in , allowing us to more easily locate mineral reserves underground, and in hydrology, allowing us to track the movement of water across the planet as we monitor the effects of ," he said.

"They'll also be important in navigation."

Dr Simon Haine, from the University of Sussex, said the development of precise atom interferometers had been hampered by an effect known as , which was uncertainty in a quantum system signal.

"Quantum noise can be combatted with a property of known as 'entanglement'," he said.

"Proof-of-principle experiments have recently shown how to generate entanglement within atom interferometers, and have used this to alleviate the effects of quantum noise.

"However, this comes at a cost, as in the process of creating entanglement, most of the atoms are wasted, which hinders the performance of these devices.

"Our project has found a way to harvest and recycle these atoms to improve the sensitivity of ultra-precise measurement devices."

Explore further: Image: Commercially available atom interferometer

More information: Stuart S. Szigeti et al. Pumped-Up SU(1,1) Interferometry, Physical Review Letters (2017). DOI: 10.1103/PhysRevLett.118.150401

Related Stories

Image: Commercially available atom interferometer

November 17, 2016

A commercially available 'atom interferometer' – exploiting clouds of ultra-cold atoms to make extremely precise measurements of variations in local gravity – on show during ESA's inaugural Quantum Technology workshop.

Looking for entangled atoms in a Bose-Einstein condensate

February 3, 2017

Using a Bose-Einstein condensate composed of millions of sodium atoms, researchers at the Georgia Institute of Technology have observed a sharp magnetically-induced quantum phase transition where they expect to find entangled ...

Viewing deeper into the quantum world

June 11, 2014

One of the important tasks for quantum physics researchers and engineers is designing more sensitive instruments to study the tiny fields and forces that govern the world we live in. The most precise measuring instruments ...

Improving measurements by reducing quantum noise

June 27, 2013

If you want to measure something very precisely, such as slight variations of a length, then you are very likely to use light waves. However, many effects, such as variations of gravity, or surface forces, can only be measured ...

Recommended for you

Weyl fermions exhibit paradoxical behavior

May 23, 2017

Theoretical physicists have found Weyl fermions to exhibit paradoxical behavior in contradiction to a 30-year-old fundamental theory of electromagnetism. The discovery has possible applications in spintronics. The study ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.