When peaceful coexistence suddenly turns into competition

April 6, 2017
To establish micro ecosystems, the researchers filled Petri dishes with litter and added the animals. Credit: Madhav P. Thakur

Biologists agree that climate change reduces biological diversity. The specific processes that ultimately cause species to go extinct have, however, been little studied so far. Scientists at the German Centre for Integrative Biodiversity Research (iDiv) and the Leipzig University have now discovered that as temperatures rise, the complex relationships between species are changing. Prey species not only become stronger competitors for scarce resources, but also more preyed upon. These findings have now been published in the renowned journal Proceedings of the Royal Society B.

To find out how rising temperatures could affect diversity, biologists from the German Centre for Integrative Biodiversity Research (iDiv) and the Leipzig University have developed a simple experiment: they covered the bottoms of Petri dishes with litter material, then put in two species of springtails, that is, arthropods only a few millimetres in size; they then added mites feeding on springtails. Subsequently, in some of the Petri dishes, they increased the ambient from 13.5°C to 18.5°C and for some other Petri dishes to 23.5°C. In those Petri dishes, the temperatures were respectively 10 degrees higher than the conditions to which the animals had been exposed in long-term cultures over the years. This created simplified miniature ecosystems under climate change conditions, in which the springtail species that peacefully coexist in the wild represented the prey, and the mites represented the predators. For two months, the researchers then observed how the interactions between the three species developed with different temperatures.

Madhav P. Thakur, the lead author of the study, explains the initial hypothesis of the Leipzig scientists: "We had actually been expecting that the smaller of the two springtail species would cope better with higher temperatures than the larger species. Their need for food is generally lower, so that it should increase less sharply under the new conditions." The actual results took the researchers by surprise: After two months, the smaller springtail species had completely disappeared in the warmer Petri dishes, whereas the larger species had managed to survive.

The study authors suspect that the smaller species was doomed due to two reasons: On the one hand, it was under a higher risk of being eaten. At higher temperatures, the predator's need for food also increases due to the generally elevated metabolism. Smaller prey are probably easier pickings than larger animals, because it is harder for them to escape from predators. On the other hand, the members of the smaller species were clearly and significantly less successful at adapting to the altered conditions—even though it is generally advantageous at higher temperatures to have a small body size. "This apparent paradox could be explained by the fact that the smaller springtail species was less able to acclimate to warmer environments, that is, to adapt its metabolism to the higher temperature, and simultaneously suffered a heavy predation. In contrast, the larger prey species could cope better with the new conditions and also more successfully escaped predation," says Thakur, who is a scientist at the iDiv research centre and the Leipzig University.

The larger prey species used in the experiment, the springtail Folsomia candida. Credit: Andy Murray

If these findings were extrapolated to the natural world, this could mean that in the future, some animal species will not only be burdened by increasing energy needs through rising temperatures, but will also be under threat due to the changing interactions between species. Thus, there is not only an increased competition for scarce resources among species on the same tier of the food chain, but also a higher probability of being eaten by predators as climate continues to warm. "This study once again demonstrates how little we understand about and can predict the complex interactions between species under future environmental conditions. Further studies with more complex communities and various model systems are urgently required here, to generate a comprehensive understanding," says Prof Dr Nico Eisenhauer, the senior author of the study.

A mite first attacks the larger prey species without success. Only once it targets the smaller prey species, it is successful. Credit: Tom Künne

The scientists had deliberately opted for using springtails in their study. These animals are not only easy to keep in the laboratory, but also play a crucial role in nature as decomposers of dead animal and plant material. If their species richness decreases due to , some of their functions could be lost, and many processes within the ecosystems might unravel.

Explore further: Species-rich food webs produce biomass more efficiently

More information: Madhav P. Thakur et al, Warming magnifies predation and reduces prey coexistence in a model litter arthropod system, Proceedings of the Royal Society B: Biological Sciences (2017). DOI: 10.1098/rspb.2016.2570

Related Stories

Species-rich food webs produce biomass more efficiently

October 5, 2016

Researchers at the Senckenberg have discovered a feedback in complex food webs: Species-rich ecosystems favor large, heavy animals. Even though this increases the amount of plants consumed, the plant biomass remains approximately ...

Seasonal warming leads to smaller animal body sizes

March 28, 2017

Changes in the body size of animals measured under controlled laboratory conditions have been shown to closely match changes in body size with seasonal warming in nature, according to research from Queen Mary University of ...

Recommended for you

Mammal long thought extinct in Australia resurfaces

December 15, 2017

A crest-tailed mulgara, a small carnivorous marsupial known only from fossilised bone fragments and presumed extinct in NSW for more than century, has been discovered in Sturt National Park north-west of Tibooburra.

Finding a lethal parasite's vulnerabilities

December 15, 2017

An estimated 100 million people around the world are infected with Strongyloides stercoralis, a parasitic nematode, yet it's likely that many don't know it. The infection can persist for years, usually only causing mild symptoms. ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.