Opinion: Worthless mining waste could suck CO2 out of the atmosphere and reverse emissions

April 21, 2017 by Simon Redfern, The Conversation
Credit: Sherman Cahal / shutterstock

The Paris Agreement commits nations to limiting global warming to less than 2˚C by the end of the century. However, it is becoming increasingly apparent that, to meet such a massive challenge, societies will need to do more than simply reduce and limit carbon emissions. It seems likely that large scale removal of greenhouse gases from the atmosphere may be called for: so-called "negative emissions".

One possibility is to use waste material from mining to trap CO₂ into new minerals, locking it out of the atmosphere. The idea is to exploit and accelerate the same geological processes that have regulated Earth's climate and surface environment over the 4.5 billion years of its existence.

Across the world, deep and open-pit mining operations have left behind huge piles of worthless rubble – the "overburden" of rock or soil that once lay above the useful coal or metal ore. Often, this rubble is stored in dumps alongside tiny fragments of mining waste – the "tailings" or "fines" left over after processing the ore. The fine-grained waste is particularly reactive, chemically, since more surface is exposed.

A lot of energy is spent on extracting and crushing all this waste. However, breaking rocks into smaller pieces exposes more fresh surfaces, which can react with CO₂. In this sense, energy used in mining could itself be harvested and used to reduce atmospheric carbon.

This is one of the four themes of a new £8.6m research programme launched by the UK's Natural Environment Research Council, which will investigate new ways to reverse emissions and remove from the atmosphere.

Spoil tips from current and historic mining operations, such as this gold mine in Kazakhstan, could provide new ways to draw CO₂ from the atmosphere. Credit: Ainur Seitkan, Earth Sciences, University of Cambridge

The process we want to speed up is the "carbonate-silicate cycle", also known as the slow carbon cycle. Natural silicate rocks like granite and basalt, common at Earth's surface, play a key part in regulating carbon in the atmosphere and oceans by removing CO₂ from the atmosphere and turning it into carbonate rocks like chalk and limestone.

Atmospheric CO₂ and water can react with the to dissolve elements they contain like calcium and magnesium into the water, which also soaks up the CO₂ as bicarbonate. This weak solution is the natural river water that flows to the oceans, which hold more than 60 times more carbon than the atmosphere. It is here, in the oceans, that the calcium and bicarbonate can recombine, over millions of years, and crystallise as calcite or chalk, often instigated by marine organisms as they build their shells.

Today, rivers deliver hundreds of millions of tonnes of carbon each year into the oceans, but this is still around 30 times less than the rate of emission into the due to fossil fuel burning. Given immense geological time scales, these processes would return atmospheric CO₂ to its normal steady state. But we don't have time: the blip in CO₂ emissions from industrialisation easily unbalances nature's best efforts.

The natural process takes millions of years – but can we do it in decades? Scientists looking at accelerated mine waste dissolution will attempt to answer a number of pressing questions. The group at Cambridge which I lead will be investigating whether we can speed up the process of silicate minerals from pre-existing mine waste being dissolved into water. We may even be able to harness friendly microbes to enhance the reaction rates.

Another part of the same project, conducted by colleagues in Oxford, Southampton and Cardiff, will study how the calcium and magnesium released from the silicate mine can react back into minerals like calcite, to lock CO₂ back into solid minerals into the geological future.

Whether this can be done effectively without requiring further fossil fuel energy, and at a scale that is viable and effective, remains to be seen. But accelerating the reaction rates in mining wastes should help us move at least some way towards reaching our climate targets.

Explore further: Researchers tap into CO2 storage potential of mine waste

Related Stories

Researchers tap into CO2 storage potential of mine waste

November 15, 2012

It's time to economically value the greenhouse gas-trapping potential of mine waste and start making money from it, says mining engineer and geologist Michael Hitch of the University of British Columbia (UBC).

Ancient forests stabilized Earth's CO2 and climate

January 23, 2014

UK researchers have identified a biological mechanism that could explain how the Earth's atmospheric carbon dioxide and climate were stabilised over the past 24 million years. When CO2 levels became too low for plants to ...

Oceans could slurp up carbon dioxide to fight global warming

November 19, 2007

Researchers in Massachusetts and Pennsylvania are proposing a new method for reducing global warming that involves building a series of water treatment plants that enhance the ability of the ocean to absorb carbon dioxide ...

Reducing carbon emissions using waste marble powder

July 27, 2016

The ongoing fraud investigation into the nearly $7 billion Mississippi clean coal plant has sparked debate on whether carbon capture is a viable technology. But to lesser fanfare, other industrial efforts to keep carbon dioxide ...

Recommended for you

El Nino and the end of the global warming hiatus

April 27, 2017

A new climate model developed by Yale scientists puts the "global warming hiatus" into a broader historical context and offers a new method for predicting global mean temperature.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.