A new mineral from the oldest solar system solids in meteorites

A new mineral from the oldest solar system solids in meteorites
Researchers have identified a new mineral in the oldest solar system solids from primitive meteorites. They've named it "rubinite" after Dr. Alan E. Rubin, a pioneering cosmochemist at University of California, Los Angeles. Rubinite was officially approved in March 2017 by the International Mineralogical Association. Credit: Tohoku University

Researchers have identified a new mineral in the oldest solar system solids from primitive meteorites. They've named it "rubinite" after Dr. Alan E. Rubin, a pioneering cosmochemist at University of California, Los Angeles. Rubinite was officially approved in March 2017 by the International Mineralogical Association.

Calcium-aluminum-rich inclusions (CAIs) are the first solar solids that formed at high temperatures in a region close to the protosun about 4.568 billion years ago. They occur as submillimeter- to centimeter-sized rocks in - meteorites derived from primitive asteroids. Because CAIs retain the properties of physico-chemical conditions of the early solar system, they are very valuable to the study of planetary science.

CAIs from two different carbonaceous chondrites were studied independently by Takashi Yoshizaki from Tohoku University and Chi Ma of the California Institute of Technology. They found tiny (< 10 µm in diameter) grains of a new garnet rubinite (chemical formula: Ca3Ti3+2Si3O12). In both cases, the new minerals show high Ti3+ contents, indicating that they formed under highly reducing conditions. Further cosmochemical studies of rubinite will uncover new insights into nebular processes and evolution of the early solar system.

More information: Mineralogical Magazine, 81, DOI: 10.1180/minmag.2017.081.022

Provided by Tohoku University

Citation: A new mineral from the oldest solar system solids in meteorites (2017, April 14) retrieved 10 May 2024 from https://phys.org/news/2017-04-mineral-oldest-solar-solids-meteorites.html
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.

Explore further

Oldest objects in solar system indicate a turbulent beginning

19 shares

Feedback to editors