Researchers unlock hardware's hidden talent for rendering 3D graphics for science—and video games

April 20, 2017, Pacific Northwest National Laboratory
High performance computing researcher Shuaiwen Leon Song tests a new architecture on rendering graphics for Doom 3, though the research ultimately benefits science that uses visualizations, models and even virtual reality. Credit: Eric Francavilla / Pacific Northwest National Laboratory

When Shuaiwen Leon Song boots up Doom 3 and Half-life 2, he does so in the name of science. Song studies high performance computing at Pacific Northwest National Laboratory, with the goal of making computers smaller, faster and more energy efficient. A more powerful computer, simply put, can solve greater scientific challenges. Like modeling complex chemical reactions or monitoring the electric power grid.

The jump from supercomputers to video games began when Song asked if hardware called 3D stacked could do something it was never designed to do: help render 3D graphics. 3D rendering has advanced science with visualizations, models and even virtual reality. It's also the stuff of video games.

"We're pushing the boundaries of what hardware can do," Song said. "And though we tested our idea on video games, this improvement ultimately benefits science."

Song collaborated with researchers from the University of Houston to develop a new architecture for 3D stacked memory that increases 3D rendering speeds up to 65 percent. The researchers exploited the hardware's feature called "processing in memory," the results of which they presented at the 2017 IEEE Symposium on High Performance Computer Architecture, or HPCA.

A normal graphics card uses a , or GPU, to create images from data stored on memory. 3D stacked memory has an added logic layer that allows for the memory to do some processing too—hence the name "processing in memory." This essentially reduces the data that has to travel from memory to GPU cores. And like an open highway, less traffic means faster speeds.

The researchers found the last step in rendering—called anisotropic filtering—creates the most traffic. So by moving anisotropic filtering to the first step in the pipeline, and performing that process in memory, the researchers found the greatest performance boost.

Song tested the architecture on popular games such as Doom 3 and Half-life 2. Virtual aliens and demons aside, this research is not so different than Song's other work. For example, Song is exploring how can model changing networks of information, and how to predict changes in these graphs. With research questions like these, Song means to push the boundaries of what computers can do.

Explore further: Samsung Speeds Up World's Fastest Graphics Memory

Related Stories

Samsung Speeds Up World's Fastest Graphics Memory

February 23, 2007

Samsung Electronics announced today that it has increased the data transfer speed of the world’s fastest graphics memory -- GDDR4 (series four of graphics double-data-rate memory) -- by two-thirds. Graphics memory processes ...

How the songbird learns its melody

June 21, 2016

Learning a first language is somewhat effortless. We start learning from our parents before we can even remember and the words and sounds are imprinted in our memory at an early age. Learning a new language as an adult is ...

Samsung Develops Ultra-fast Graphics Memory

February 14, 2006

Samsung Electronics announced that it has developed the world’s fastest graphics memory - a GDDR4 graphics DRAM chip with much faster processing than an earlier version that Samsung led the industry in prototyping only ...

Recommended for you

How social networking sites may discriminate against women

April 20, 2018

Social media and the sharing economy have created new opportunities by leveraging online networks to build trust and remove marketplace barriers. But a growing body of research suggests that old gender and racial biases persist, ...

Virtually modelling the human brain in a computer

April 19, 2018

Neurons that remain active even after the triggering stimulus has been silenced form the basis of short-term memory. The brain uses rhythmically active neurons to combine larger groups of neurons into functional units. Until ...

'Poker face' stripped away by new-age tech

April 14, 2018

Dolby Laboratories chief scientist Poppy Crum tells of a fast-coming time when technology will see right through people no matter how hard they try to hide their feelings.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.