Sun's UV light helped spark life

March 31, 2017 by Elizabeth Howell, Astrobiology Magazine, Astrobio.net
While many studies are focused on the detrimental effects of high energy UV sunlight, it is also an important source of energy that can drive the formation of biomolecules relevant to life. Credit: NASA

High energy, ultraviolet radiation from the Sun is a known to hazard to life, yet the energy provided by our star has played an important role as the essential driver of life on Earth.

Before life began, radiation from the Sun was the primary source of energy on our planet, just as it is today. In this oxygen-poor, prebiotic world, solar energy may have provided the jolt to transform simple organic molecules into more complex ones, which were used as the building blocks of biology and life.

A new paper by two University of Colorado at Boulder authors considers how this might have happened through a review of existing literature on the topic.

"We're looking at examples in the literature and from our own lab where sunlight has been used to build from simple, prebiotically-available starting materials," said lead author Rebecca Rapf, a doctoral candidate in physical chemistry.

The paper, "Sunlight as an energetic driver in the synthesis of molecules necessary for life," co-authored by her advisor, Veronica Vaida, recently appeared in the journal Physical Chemistry Chemical Physics. Rapf's work is supported by a NASA Earth and Space Science Fellowship as well as funds from NASA's Habitable Worlds Program.

Sunlight is the largest energy source on both the modern and early Earth, fueling most of today’s life and likely aiding in the development of larger, more complex molecules necessary for primitive life. Pictured is the Earth as seen from the International Space Station. Credit: NASA

The lack of oxygen in the early atmosphere means that more high-energy from the Sun would have reached the surface of the prebiotic Earth than today, where it is filtered by ozone. Even though this component of sunlight can be destructive to certain biomolecules, the energy provided could still be useful to early life chemistry, Rapf said. "Even if you destroy a molecule, it is broken into smaller, very reactive chunks that readily undergo additional reactions, recombining to form larger high-energy molecules."

In particular, the researchers were intrigued by a group of oxygen-laden acids called oxoacids. An example is pyruvic , which is at the center of key metabolic pathways in life today. When dissolved in water and illuminated with ultraviolet light, pyruvic acid is known to react to make larger molecules, with higher yields under the oxygen-limited conditions that would be found on the early Earth.

Pyruvic acid is only one of a class of molecules that react in the same way to form these larger species. Another molecule in this class, 2-oxooctanoic acid, is particularly interesting because it is an example of a simple lipid. 2-oxooctanoic acid was likely "prebiotically relevant," Rapf added, meaning it could be useful to the chemistry that eventually led to life.

In an earlier study on 2-oxooctanoic acid, Rapf and Vaida found that exposing it to light forms a more complex molecule, dihexyltartaric acid. This is noteworthy because the new molecule has two alkyl chains, meaning it more closely resembles the lipids that are in modern cells, which also have two tails. This light-driven process, discovered in the Vaida lab, is one of only a few ways to make double-tailed lipids from simple, single-tailed molecules under prebiotic conditions.

"We're using sunlight as a way of building bigger molecules, but in order to be useful to the development of biology any molecules you build have to be stable enough to exist in the environment," added Rapf.

In the case of 2-oxooctanoic acid, the product, dihexyltartaric acid, does not absorb the same UV light and therefore, is protected from undergoing further photochemistry (chemical reactions as a result of sunlight). These double-tailed lipids also spontaneously assemble into membrane-enclosed compartments, resembling simple protocells that are necessary to the evolution of . The researchers are hunting for other that could be activated by starlight and generate biologically-relevant compounds in a broader astrobiological context.

Explore further: Discovery of alternative photochemistry on water surfaces

More information: Elizabeth C. Griffith et al. Photoinitiated Synthesis of Self-Assembled Vesicles, Journal of the American Chemical Society (2014). DOI: 10.1021/ja5006256

Rebecca J. Rapf et al. Sunlight as an energetic driver in the synthesis of molecules necessary for life, Phys. Chem. Chem. Phys. (2016). DOI: 10.1039/c6cp00980h

Related Stories

Jumping hurdles in the RNA world

November 21, 2014

Astrobiologists have shown that the formation of RNA from prebiotic reactions may not be as problematic as scientists once thought.

Building blocks of life's building blocks come from starlight

October 13, 2016

Life exists in a myriad of wondrous forms, but if you break any organism down to its most basic parts, it's all the same stuff: carbon atoms connected to hydrogen, oxygen, nitrogen and other elements. But how these fundamental ...

Protein-like structures from the primordial soup

September 12, 2016

Experiments performed by ETH scientists have shown that it is remarkably easy for protein-like, two-dimensional structures—amyloids—to form from basic building blocks. This discovery supports the researchers' hypothesis ...

Recommended for you

New theory shows how strain makes for better catalysts

April 20, 2018

Brown University researchers have developed a new theory to explain why stretching or compressing metal catalysts can make them perform better. The theory, described in the journal Nature Catalysis, could open new design ...

Machine-learning software predicts behavior of bacteria

April 19, 2018

In a first for machine-learning algorithms, a new piece of software developed at Caltech can predict behavior of bacteria by reading the content of a gene. The breakthrough could have significant implications for our understanding ...

Spider silk key to new bone-fixing composite

April 19, 2018

UConn researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

GLUT5 fluorescent probe fingerprints cancer cells

April 19, 2018

Determining the presence of cancer, as well as its type and malignancy, is a stressful process for patients that can take up to two weeks to get a diagnosis. With a new bit of technology—a sugar-transporting biosensor—researchers ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.