Raising the (G)bar for antimatter exploration

March 20, 2017 by Iva Raynova
Installation of the GBAR linac in its shielding bunker. The electrons accelerated to 10 MeV toward a target will produce the positrons that are necessary to form antihydrogen with the antiprotons coming from the ELENA decelerator. Credit: Max Brice/CERN

The absence of antimatter in the universe is a long-standing jigsaw puzzle in physics. Many experiments have been exploring this question by finding asymmetries between particles and their antimatter counterparts.

GBAR (Gravitational Behaviour of Antihydrogen at Rest), a new experiment at CERN, is preparing to explore one aspect of this puzzle – what is the effect of gravity on ? While theories exist as to whether antimatter will behave like matter or not, a definitive experimental result is still missing.

GBAR will measure the effect of gravity on . Located in the Antiproton Decelerator (AD) hall, GBAR is the first of five experiments that will be connected to the new ELENA deceleration ring. On 1 March, the first component of the experiment was installed – a linear accelerator (linac). In sharp contrast to the LHC's chain of big accelerators and fast particles, the AD world of antimatter is small and its particles are as slow as they come. The GBAR linac is only 1.2 metres long and it will be used to create positrons, the antimatter equivalent of electrons.

The experiment will use antiprotons supplied by ELENA and positrons created by the linac to produce antihydrogen ions. They consist of one antiproton and two positrons, and their positive charge makes them significantly easier to manipulate. With the help of lasers, their velocity will be reduced to half a metre per second. This will allow them to be directed to a fixed point. Then, trapped by an electric field, one of their positrons will be removed with a laser, which will make them neutral again. The only force acting on them at this point will be gravity and they will be free to make a 20-centimetre fall, during which researchers will observe their behaviour.

The results might turn out to be very exciting. As the spokesperson of GBAR, Patrice Pérez, explains: "Einstein's Equivalence Principle states that the trajectory of a particle is independent of its composition and internal structure when it is only submitted to gravitational forces. If we find out that gravity has a different effect on antimatter, this would mean that we still have a lot to learn about the universe."

Five other experiments are based at the Antiproton Decelerator, two of which – AEGIS and ALPHA – are also studying the effect of on antimatter.

Explore further: A new ring to slow down antimatter

Related Stories

A new ring to slow down antimatter

November 29, 2016

You could mistake ELENA for a miniature accelerator. But, unlike most accelerators, it's housed in a hangar and you can take it all in in just a single glance. The biggest difference though, is that it doesn't accelerate ...

ALPHA observes light spectrum of antimatter for first time

December 19, 2016

In a paper published today in the journal Nature, the ALPHA collaboration reports the first ever measurement on the optical spectrum of an antimatter atom. This achievement features technological developments that open up ...

A cool investigation into antiproton beam dynamics

August 31, 2016

A new paper published in Nuclear Instruments and Methods in Physics A will help scientists provide higher quality antiproton beams to experiments at CERN and antimatter facilities across the world. "Non-Gaussian beam dynamics ...

Recommended for you

A curious quirk brings organic diode lasers one step closer

November 20, 2017

Since their invention in 1962, semiconductor diode lasers have revolutionized communications and made possible information storage and retrieval in CDs, DVDs and Blu-ray devices. These diode lasers use inorganic semiconductors ...

Carefully crafted light pulses control neuron activity

November 17, 2017

Specially tailored, ultrafast pulses of light can trigger neurons to fire and could one day help patients with light-sensitive circadian or mood problems, according to a new study in mice at the University of Illinois.

Strain-free epitaxy of germanium film on mica

November 17, 2017

Germanium, an elemental semiconductor, was the material of choice in the early history of electronic devices, before it was largely replaced by silicon. But due to its high charge carrier mobility—higher than silicon by ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.