A cool investigation into antiproton beam dynamics

August 31, 2016, Cockcroft Institute

A new paper published in Nuclear Instruments and Methods in Physics A will help scientists provide higher quality antiproton beams to experiments at CERN and antimatter facilities across the world. "Non-Gaussian beam dynamics in low energy antiproton storage rings" (J. Resta-López et.al) presents simulation studies undertaken to investigate the effects of beam heating phenomena present in antimatter decelerators.

Currently most, if not all, antimatter experiments rely on low energy antiproton beams as a means to study the fundamental properties of . As a result, particle "accelerators" are used in a more unusual way to reduce the energy of, and slow down anti-particles. Once such "decelerator" is currently undergoing construction at the Antimatter Factory at CERN and is due for completion later this year. The Extra Low Energy Antiproton Decelerator (ELENA) ring will provide several experiments with higher intensity and lower beams than they have had before – speeding up the process of obtaining answers to fundamental questions about the universe. However, during the deceleration and storage process the beam experiences heating effects, causing the beam to "blow up" in phase space and if unmonitored and ignored, become unusable.

Using ELENA as a case study, the paper investigates how cooling instruments such as the electron cooler can counteract these negative effects, and what this will mean for the shape and characteristics of the beam when it reaches the experiments. The paper presents several methods for simulating the beam evolution under these conflicting forces, eventually suggesting the best model and showing the distribution of the after the deceleration and cooling process.

The paper marks an important step towards understanding how to best control and manipulate some of the more mysterious matter in the universe.

Explore further: Antihydrogen at CERN, 20 years and going strong

More information: J. Resta-López et al. Non-Gaussian beam dynamics in low energy antiproton storage rings, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment (2016). DOI: 10.1016/j.nima.2016.08.003

Related Stories

CERN sets course for extra-low-energy antiprotons

September 29, 2011

The kick-off meeting for ELENA, the Extra Low Energy Antiproton Ring, starts today at CERN. Approved by CERN Council in June this year, ELENA is scheduled to deliver its first antiprotons in 2016. This week’s kick-off ...

Protons and antiprotons appear to be true mirror images

August 12, 2015

In a stringent test of a fundamental property of the standard model of particle physics, known as CPT symmetry, researchers from the RIKEN-led BASE collaboration at CERN have made the most precise measurements so far of the ...

Are there antimatter galaxies?

June 10, 2016

One of the biggest mysteries in astronomy is the question, where did all the antimatter go? Shortly after the Big Bang, there were almost equal amounts of matter and antimatter. I say almost, because there was a tiny bit ...

Recommended for you

ATLAS experiment observes light scattering off light

March 20, 2019

Light-by-light scattering is a very rare phenomenon in which two photons interact, producing another pair of photons. This process was among the earliest predictions of quantum electrodynamics (QED), the quantum theory of ...

How heavy elements come about in the universe

March 19, 2019

Heavy elements are produced during stellar explosion or on the surfaces of neutron stars through the capture of hydrogen nuclei (protons). This occurs at extremely high temperatures, but at relatively low energies. An international ...

Trembling aspen leaves could save future Mars rovers

March 18, 2019

Researchers at the University of Warwick have been inspired by the unique movement of trembling aspen leaves, to devise an energy harvesting mechanism that could power weather sensors in hostile environments and could even ...

Quantum sensing method measures minuscule magnetic fields

March 15, 2019

A new way of measuring atomic-scale magnetic fields with great precision, not only up and down but sideways as well, has been developed by researchers at MIT. The new tool could be useful in applications as diverse as mapping ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.