The fate of exomoons

March 27, 2017, Harvard-Smithsonian Center for Astrophysics
An artist's fanciful conception of an Earth-like "exomoon" orbiting a gas giant planet in a star's habitable zone. Astronomers trying to explain the apparent accretion of rocky material onto some white dwarf stars have identified exomoons as a likely source. Credit: NASA/JPL-Caltech

When a star like our sun gets to be very old, after another seven billion years or so, it will shrink to a fraction of its radius and become a white dwarf star, no longer able to sustain nuclear burning. Studying the older planetary systems around white dwarfs provides clues to the long-term fate of our Sun and its planetary system. The atmosphere of a white dwarf star is expected to break up any material that accretes onto it into the constituent chemical elements and then to stratify them according to their atomic weights. The result is that the visible, uppermost layers of the atmosphere of a white dwarf should contain only a combination of hydrogen, helium (and some carbon). About one thousand white dwarf stars, however, show evidence in their spectra of pollution by some form of rocky material. This suggests that there is frequent, ongoing accretion onto these white dwarf stars of fragmentary material coming from somewhere - the precise origins are not clear.

CfA astronomers Matt Payne and Matt Holman, with two colleagues, have completed a series of simulations of the late evolution of planetary systems to try to understand where this material might be coming from. It was already known that the moons of planets can be easily knocked out of their orbits during planet-planet interactions in white dwarf systems. The question was whether these freed moons might themselves accrete onto the star to provide the polluting elements, or whether they might act to scatter asteroids towards the star. The difficulty has been the computational limits of simulating a complex evolving system that included the moons around planets.

The astronomers developed a technique of simulating the systems' evolution without moons, but then adding back the moons at a later stage in a self-consistent way. When they did so, they found that the freed moons often meandered around the inner reaches of their stellar system (well within one astronomical unit of their star), and as a consequence could either fall into the star themselves or else knock smaller asteroids, comets, or other small bodies onto the star. Thus it seems that both processes are at work. The result provides a first-look assessment of what can happen to moons once they become unbound in white dwarf systems. Future studies are planned to determine the relative importance of liberated moon material.

Explore further: Dwarf star 200 light-years away contains life's building blocks

More information: Matthew J. Payne et al. The fate of exomoons in white dwarf planetary systems, Monthly Notices of the Royal Astronomical Society (2017). DOI: 10.1093/mnras/stw2585

Related Stories

Dwarf star 200 light-years away contains life's building blocks

February 9, 2017

Many scientists believe the Earth was dry when it first formed, and that the building blocks for life on our planet—carbon, nitrogen and water—appeared only later as a result of collisions with other objects in our solar ...

Dating the Milky Way's disc

February 20, 2017

When a star like our sun gets to be very old, after another seven billion years or so, it will no longer be able to sustain burning its nuclear fuel. With only about half of its mass remaining, it will shrink to a fraction ...

Binary white dwarf stars

May 4, 2011

(PhysOrg.com) -- When a star like our sun gets to be very old, after another seven billion years or so, it will no longer be able to sustain burning its nuclear fuel.

Hubble views a colorful demise of a sun-like star

September 26, 2016

This image, taken by the NASA/ESA Hubble Space Telescope, shows the colorful "last hurrah" of a star like our sun. The star is ending its life by casting off its outer layers of gas, which formed a cocoon around the star's ...

White Dwarf Stars Consume Rocky Bodies

August 16, 2011

“I love rocky road… So won’t you buy another gallon, baby…” Yeah. We all love rocky road ice cream, but what do stars like to snack on? In the case of the white dwarf star it would appear that a rocky ...

Recommended for you

Hubble paints picture of the evolving universe

August 16, 2018

Astronomers using the ultraviolet vision of NASA's Hubble Space Telescope have captured one of the largest panoramic views of the fire and fury of star birth in the distant universe. The field features approximately 15,000 ...

Sprawling galaxy cluster found hiding in plain sight

August 16, 2018

MIT scientists have uncovered a sprawling new galaxy cluster hiding in plain sight. The cluster, which sits a mere 2.4 billion light years from Earth, is made up of hundreds of individual galaxies and surrounds an extremely ...

Unusual doughnut-shaped jet observed in the galaxy NGC 6109

August 15, 2018

Astronomers from the University of Bristol, U.K., have uncovered an unusual doughnut-shaped jet in the radio galaxy NGC 6109. It is the first time that such a jet morphology has been observed in a low-power radio galaxy. ...

Iron and titanium in the atmosphere of an exoplanet

August 15, 2018

Exoplanets, planets in other solar systems, can orbit very close to their host stars. When the host star is much hotter than the sun, the exoplanet becomes as hot as a star. The hottest "ultra-hot" planet was discovered last ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.