Dating the Milky Way's disc

February 20, 2017, Harvard-Smithsonian Center for Astrophysics
Dating the Milky Way's disc
A photograph of the Andromeda galaxy, a spiral like our Milky Way. Astronomers have discovered white dwarf stars in the disc of the Milky Way galaxy, and measured their properties to obtain an age to the disc of at least eleven billion years. Credit: NOAO and the Local Group Survey Team and T.A. Rector; University of Alaska Anchorage

When a star like our sun gets to be very old, after another seven billion years or so, it will no longer be able to sustain burning its nuclear fuel. With only about half of its mass remaining, it will shrink to a fraction of its radius and become a white dwarf star. White dwarfs are common, the most famous one being the companion to the brightest star in the sky, Sirius. As remnants of some of the oldest stars in the galaxy, white dwarfs offer an independent means of dating the lifetimes of different galactic populations.

A globular cluster is a roughly spherical ensemble of stars (as many as several million) that are gravitationally bound together and typically located in the outer regions of galaxies. The white dwarf stars in the Milly Way's globular clusters reveal an age spread of between eleven and thirteen billion years. By contrast, the thick disk of the galaxy is thought to be older than ten billion years but that figure is not very well constrained. White dwarfs in the disc can be used to refine those age estimates and, since they are closer and brighter to us than those in , they can provide more detailed information. However, they are not located in well-defined regions like clusters and so they are also harder to spot.

CfA astronomer Warren Brown and his colleagues used the 6.5-m Multiple Mirror Telescope (MMT) to obtain spectra of fifty-seven white dwarf candidate stars in the disk first discovered in all-sky surveys. Modeling the spectra of these stars revealed a mixture of types (for example, some had atmospheres of pure helium and others of pure hydrogen) and also an age for the disc of eleven billion years. The result is consistent with the current age estimates for the thick disc but also suggests that the current minimum age estimate might be increased. Additional measurements are needed to refine the age range, and the scientists predict that large-scale sky surveys now underway will significantly increase the number of non-cluster and enable the determination of their parameters.

Explore further: Binary white dwarf stars

More information: Kyra Dame et al. New halo white dwarf candidates in the Sloan Digital Sky Survey, Monthly Notices of the Royal Astronomical Society (2016). DOI: 10.1093/mnras/stw2146

Related Stories

Binary white dwarf stars

May 4, 2011

(PhysOrg.com) -- When a star like our sun gets to be very old, after another seven billion years or so, it will no longer be able to sustain burning its nuclear fuel.

Astronomers discover how white dwarf stars get their 'kicks'

December 4, 2007

University of British Columbia astronomer Harvey Richer and UBC graduate student Saul Davis have discovered that white dwarf stars are born with a natal kick, explaining why these smoldering embers of Sun-like stars are found ...

Image: Hubble admires a youthful globular star cluster

October 31, 2016

Globular clusters offer some of the most spectacular sights in the night sky. These ornate spheres contain hundreds of thousands of stars, and reside in the outskirts of galaxies. The Milky Way contains over 150 such clusters—and ...

Hubble Sees Faintest Stars in a Globular Cluster

August 17, 2006

NASA's Hubble Space Telescope has uncovered what astronomers are reporting as the dimmest stars ever seen in any globular star cluster. Globular clusters are spherical concentrations of hundreds of thousands of stars.

Feuding helium dwarfs exposed by eclipse

May 24, 2011

Researchers at the University of Warwick have found a unique feuding double white dwarf star system where each star appears to have been stripped down to just its helium.

Recommended for you

Comprehensive model captures entire life cycle of solar flares

January 15, 2019

A team of scientists has, for the first time, used a single, cohesive computer model to simulate the entire life cycle of a solar flare: from the buildup of energy thousands of kilometers below the solar surface, to the emergence ...

Team discovers new way supermassive black holes are 'fed'

January 14, 2019

Supermassive black holes weigh millions to billions times more than our sun and lie at the center of most galaxies. A supermassive black hole several million times the mass of the sun is situated in the heart of our very ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.