Organic electronics can use power from socket

March 21, 2017, Linköping University

Organic light-emitting devices and printed electronics can be connected to a socket in the wall by way of a small, inexpensive organic converter, developed in a collaboration between Linköping University and Umeå University, Sweden.

Printed electronics and organic light-emitting devices now perform at levels sufficient for a number of eco-friendly, energy-efficient applications. Previously the idea has been to drive the organic electronics using solar cells, batteries or wireless transformers, which works well in many cases. But for fixed installations like lighting, signage or UV-blocking windows, it is convenient to use a wall socket. Until now this has not been possible, because the high voltage damages the electronics.

Docent Deyu Tu from LiU's Division of Information Coding has led a project where colleagues at Umeå University joined forces to find a solution to this problem. And they have now been able to demonstrate an organic converter that makes it possible to drive organic light-emitting devices with high luminescence, and to charge supercapacitors, both using electricity from an ordinary wall socket.

The converter consists of diode-connected organic thin-film transistors, operated at high voltages up to 325 V, with the capacity to transform high alternating current (AC) to a selected direct current (DC).

Credit: Linköping Universitet
"For the first time in the world we have been able to demonstrate an AC/DC converter in that functions at voltages above 300 V," says Deyu Tu.

"Our paves the way for a wave of flexible, thin, cost-effective and eco-friendly solutions for the electronics of the future."

This is a pioneer work of organic AC/DC converters, a first stage to prove the concept of organic power electronics. To be used in real products, the needs to be improved.

"We have initiated the follow-up work to deal with this issue," says Deyu Tu.

Explore further: New ways to see light and store information

More information: Christian Larsen et al. Design, fabrication and application of organic power converters: Driving light-emitting electrochemical cells from the AC mains, Organic Electronics (2017). DOI: 10.1016/j.orgel.2017.02.036

V. Keshmiri et al. A Current Supply with Single Organic Thin-Film Transistor for Charging Supercapacitors, ECS Transactions (2016). DOI: 10.1149/07510.0217ecst

Related Stories

New ways to see light and store information

April 13, 2015

Researchers from the University of Cologne, Jilin University and the University of Nottingham have developed a method to significantly prolong the lives of charges in organic electronic devices.

Researchers review the state of printed organic electronics

January 19, 2017

While the world of electronics devices was radically different 30 years ago when Sumitomo Chemical (SC) began developing printed electronics technology, the company had already felt it was an area where they could make a ...

Tomorrow's clothes may be made with light-emitting e-fabric

August 3, 2016

(Tech Xplore)—Researchers have fabricated a large-area textile that emits bright yellow light for more than 180 hours. The low-cost, flexible, transparent textile has potential applications in light-emitting clothing, signs, ...

Recommended for you

Ancient enzymes the catalysts for new discoveries

October 22, 2018

University of Queensland-led research recreating 450 million-year-old enzymes has resulted in a biochemical engineering 'hack' which could lead to new drugs, flavours, fragrances and biofuels.

Study describes cellular factories in greater detail

October 22, 2018

Many important natural products such as antibiotics, immunosuppressants and cancer drugs are derived from microorganisms. These natural products are often small proteins or peptides generated in the cell by NRPS enzymes similar ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.