The ATLAS Experiment's quest for the lost arc

March 28, 2017, ATLAS Experiment
ATLAS simulation showing a hypothetical new charged particle (χ1+) traversing the four layers of the pixel system and decaying to an invisible neutral particle (χ10) and an un-detected pion (π+). The red squares represent the particle interactions with the detector. Credit: ATLAS Collaboration/CERN

Nature has surprised physicists many times in history and certainly will do so again. Therefore, physicists have to keep an open mind when searching for phenomena beyond the Standard Model. 

Some theories predict the existence of new that live for a very short time. These particles would decay to known particles that interact with the sophisticated "eyes" of the ATLAS Experiment at CERN. However, this may not be the case. An increasingly popular alternative is that some of these new particles may have masses very close to each other, and would thus travel some distance before decaying. This allows for the intriguing possibility of directly observing a new type of particle with the ATLAS experiment, rather than reconstructing it via its decay products as physicists do for example for the Higgs boson. 

An attractive scenario predicts the existence of a new electrically charged particle, a chargino (χ1±), that may live long enough to travel a few tens of centimetres before decaying to an invisible neutral weakly interacting particle, a neutralino (χ10). A charged pion would also be produced in the decay but, due to the very similar mass of the chargino and the neutralino, its energy would not be enough for it to be detected. As shown in Figure 1, simulations predict a quite spectacular signature of a charged particle "disappearing" due to the undetected decay products.

The number of reconstructed short tracks (tracklets) as a function of their transverse momentum (pT). ATLAS data (black points) are compared with the expected contribution from background sources (gray solid line shows the total) . A new particle would appear as an additional contribution at large pT, as shown for example by the dashed red line. The bottom panel shows the ratio of the data and the background predictions. The error band shows the uncertainty of the background expectation including both statistical and systematic uncertainties. Credit: ATLAS Collaboration/CERN

ATLAS physicists have developed dedicated algorithms to directly observe charged particles travelling as little as 12 centimetres from their origin. Thanks to the new Insertable B-Layer in the ATLAS experiment, these algorithms show improved performance reconstructing such charged particles that do not live long enough to interact with other detector systems. So far, the abundance and properties of the observed particles are in agreement with what is expected from known background processes.

New results presented at the 2017 Moriond Electroweak conference set very stringent limits on what mass such particles may have, if they exist. These limits severely constrain one important type of Supersymmetry dark matter. Although no has been observed, ATLAS continue the search for this "lost arc". Stay tuned!

Explore further: ATLAS sees Higgs boson decay to fermions

More information: Search for long-lived charginos based on a disappearing-track signature in pp collisions at √s=13 TeV with the ATLAS detector: atlas.web.cern.ch/Atlas/GROUPS … /ATLAS-CONF-2017-017
Presentation at Moriond Electroweak Conference by Toshiaki Kaji: "Search for winos using a disappearing track signature in ATLAS": indico.in2p3.fr/event/13763/se … /75/material/slides/

Related Stories

ATLAS sees Higgs boson decay to fermions

November 28, 2013

The ATLAS experiment at CERN has released preliminary results that show evidence that the Higgs boson decays to two tau particles. Taus belong to a group of subatomic particles called the fermions, which make up matter. ...

The case for co-decaying dark matter

December 5, 2016

(Phys.org)—There isn't as much dark matter around today as there used to be. According to one of the most popular models of dark matter, the universe contained much more dark matter early on when the temperature was hotter. ...

Higgs boson machine-learning challenge

May 20, 2014

Last week, CERN was among several organizations to announce the Higgs boson machine-learning challengeExternal Links icon – your chance to develop machine-learning techniques to improve analysis of Higgs data.

ATLAS and CMS experiments shed light on Higgs properties

September 1, 2015

Three years after the announcement of the discovery of a new particle, the so-called Higgs boson, the ATLAS and CMS Collaborations present for the first time combined measurements of many of its properties, at the third annual ...

LHC experiments join forces to zoom in on the Higgs boson

March 17, 2015

Today during the 50th session of "Rencontres de Moriond" in La Thuile Italy, ATLAS and CMS presented for the first time a combination of their results on the mass of the Higgs boson. The combined mass of the Higgs boson is ...

Recommended for you

Helping Marvel superheroes to breathe

November 18, 2018

Marvel comics superheroes Ant-Man and the Wasp—nom de guerre stars of the eponymous 2018 film—possess the ability to temporarily shrink down to the size of insects, while retaining the mass and strength of their normal ...

Scientists explain how wombats drop cubed poop

November 18, 2018

Wombats, the chubby and beloved, short-legged marsupials native to Australia, are central to a biological mystery in the animal kingdom: How do they produce cube-shaped poop? Patricia Yang, a postdoctoral fellow in mechanical ...

Explaining a fastball's unexpected twist

November 18, 2018

An unexpected twist from a four-seam or a two-seam fastball can make the difference in a baseball team winning or losing the World Series. However, "some explanations regarding the different pitches are flat-out wrong," said ...

Scientists produce 3-D chemical maps of single bacteria

November 16, 2018

Scientists at the National Synchrotron Light Source II (NSLS-II)—a U.S. Department of Energy (DOE) Office of Science User Facility at DOE's Brookhaven National Laboratory—have used ultrabright x-rays to image single bacteria ...

Quantum science turns social

November 15, 2018

Researchers in a lab at Aarhus University have developed a versatile remote gaming interface that allowed external experts as well as hundreds of citizen scientists all over the world to optimize a quantum gas experiment ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.