Vegetation resilient to salvage logging after severe wildfire

February 3, 2017, USDA Forest Service
Nearly 10 years after having half its trees removed in a salvage logging operation following the 2002 Cone Fire in California's Lassen National Forest, the amount and variety of naturally regenerated plant life in this stand of trees differed little from a similarly burned area that wasn't logged. Credit: Carl Skinner, US Forest Service

Nearly a decade after being logged, vegetation in forested areas severely burned by California's Cone Fire in 2002 was relatively similar to areas untouched by logging equipment. The findings of a U.S. Forest Service study shed light on how vegetation responds to severe wildfire and whether further disturbances from logging affect regrowth.

The study, "Response of understory vegetation to salvage logging following a high-severity wildfire," reports a modest difference between logged and unlogged areas for some shrubs, but researchers with the agency's Pacific Southwest Research Station conclude the diversity of plant species and their abundance, as a whole, differed little between logged and unlogged sites. Salvage refers to the practice of harvesting fire-killed trees ("salvage") to extract economic value from them before the wood decays.

The differences observed within the shrub communities could stem from the plants' reproduction cycle and timing of the logging operations.

"The three native shrub species that declined in abundance with logging (prostrate ceanothus, snowbrush ceanothus and greenleaf manzanita) have seeds triggered to germinate by heat or char from fire," said Eric Knapp, a research ecologist with the Forest Service and study co-author. Logging occurred more than a year after the fire, which would have coincided with the seedling stage of the new shrubs, making them vulnerable to surface disturbances.

"It is possible that the effect on shrubs might have been avoided if logging had been done soon after the fire, prior to seeds germinating," Knapp said.

Additional findings include:

  • Researchers did not find a difference in the abundance of native versus weedy non-native plants between logged and unlogged sites. A common concern in post-fire logging is that logging equipment may serve as a source or transport for unwanted plant species.
  • Researchers observed which weren't dependent on fire-stimulated germination to be less affected by post-fire logging. Many of these species emerge from deeply buried roots or bulbs, leading researchers to believe they were better protected from ground disturbances caused by logging machinery.
  • Researchers did observe, however, substantial changes in the plant community during the course of the six-year study. For example, the amount of weedy non-native plants across all research sites increased, suggesting that the plant community responded more strongly to environmental changes caused by high-intensity wildfire than disturbances from logging.

The relatively flat ground and rocky soil of the research sites within the Blacks Mountain Experimental Forest in California's Lassen National Forest, where the Cone Fire burned, may have reduced negative effects associated with ground disturbance, leading researchers to caution applying their findings to areas where soil disturbance from logging is greater. However, the results do coincide with a growing body of evidence from other post-fire logging studies.

"Longer-term research is finding that understory vegetation might not be as substantially impacted by post-fire logging as originally feared," said Martin Ritchie, Forest Service research forester and study co-author, "especially when care is taken to minimize soil impacts."

Knowing that salvage logging doesn't appear to significantly impact vegetation regrowth could allow researchers and land managers to instead focus attention on other aspects of post-fire logging that could benefit from further research.

"If future studies continue to not find strong longer-term salvage harvest effects on forest understory vegetation," Knapp said, "the debates about pros and cons of post-fire management could then narrow to topics such as snag habitat and woody fuel levels that are unequivocally impacted by salvage harvest."

Explore further: Post-fire logging can reduce fuels for up to 40 years in regenerating forests, new study finds

Related Stories

Salvaging the ecosystem after salvage logging

January 7, 2015

After a forest fire burns a large swath across timberlands, logging companies often are not far behind. They come in to do what is called salvage logging—salvaging the timber that has not been completely destroyed by the ...

79 years of monitoring demonstrates dramatic forest change

January 6, 2014

Long-term changes to forests affect biodiversity and how future fires burn. A team of scientists led by Research Ecologist Dr. Eric Knapp, from the U.S. Forest Service's Pacific Southwest Research Station, found dramatic ...

New evidence that forest fires do not threaten spotted owls

June 24, 2016

New Research on the California spotted owl has found that severely burned forests that have not been post-fire salvage logged are used by the threatened raptor when foraging for their small mammal prey. Stand-replacing ...

Feds allows logging after huge California wildfire

August 28, 2014

The U.S. Forest Service has decided to allow logging on nearly 52 square miles of the Sierra Nevada burned last year in a massive California wildfire, a move contested by environmentalists.

Recommended for you

A decade on, smartphone-like software finally heads to space

March 20, 2019

Once a traditional satellite is launched into space, its physical hardware and computer software stay mostly immutable for the rest of its existence as it orbits the Earth, even as the technology it serves on the ground continues ...

Tiny 'water bears' can teach us about survival

March 20, 2019

Earth's ultimate survivors can weather extreme heat, cold, radiation and even the vacuum of space. Now the U.S. military hopes these tiny critters called tardigrades can teach us about true toughness.

Researchers find hidden proteins in bacteria

March 20, 2019

Scientists at the University of Illinois at Chicago have developed a way to identify the beginning of every gene—known as a translation start site or a start codon—in bacterial cell DNA with a single experiment and, through ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.