Super-resolution system reveals mechanics of tiny 'DNA walker'

February 10, 2017 by Emil Venere, Purdue University
Super-resolution system reveals mechanics of tiny ‘DNA walker’
This animated gif depicts the walking mechanism behind a DNA walking system that could find biomedical and industrial applications. Credit: Purdue University image/Jared Pike

Researchers have introduced a new type of "super-resolution" microscopy and used it to discover the precise walking mechanism behind tiny structures made of DNA that could find biomedical and industrial applications.

The researchers also demonstrated how the "DNA walker" is able to release an anticancer drug, representing a potential new biomedical technology, said Jong Hyun Choi, an associate professor of mechanical engineering at Purdue University.

Synthetic nanomotors and walkers are intricately designed systems that draw chemical energy from the environment and convert it into mechanical motion. However, because they are too small to be observed using conventional light microscopes, researchers have been unable to learn the precise steps involved in the walking mechanisms, knowledge essential to perfecting the technology.

"If you cannot resolve or monitor these walkers in action, you will be unable to understand their mechanical operation," Choi said.

He led a Purdue team that has solved this problem by developing a super-resolution microscopy system designed to study the DNA walkers. The new findings appeared in the journal Science Advances on Jan. 20.

Researchers around the world are creating synthetic motors based on DNA and RNA, the genetic materials in cells that consist of a sequence of four chemical bases: adenine, guanine, cytosine and thymine. The designs are inspired by natural biological motors that have evolved to perform specific tasks critical to the function of cells.

A new type of “super-resolution” microscopy has allowed researchers at Purdue University to determine the walking mechanism behind a DNA walking system that could find biomedical and industrial applications. The walker (A) travels along a carbon-nanotube track “decorated” with strands of RNA fuel, which it harvests for energy. An atomic force microscope image (B) shows the DNA walker attached to this track. At bottom are raw images taken with the super-resolution microscope showing the DNA walker (green) traveling along the track (red). Credit: Purdue University image/Jing Pan

The Purdue researchers have designed a DNA walking system consisting of an enzymatic core and two arms. The walker travels along a carbon-nanotube track "decorated" with strands of RNA. The enzymatic core cleaves off segments of these RNA strands as the walker continuously moves forward, binding to and harvesting energy from the RNA. The walker moves in a six-step cycle that repeats as long as there is RNA fuel.

A fluorescent nanoparticle is attached to one arm of the DNA walker, causing it to glow when exposed to light in the visible part of the spectrum. The carbon-nanotube track also fluoresces when exposed to light in a portion of the near-infrared spectrum. Because the new super-resolution microscopy system operates in both the visible and near-infrared spectra, it is possible to track the walking mechanism.

The super-resolution technology allows researchers to resolve structural features far smaller than the wavelength of visible light, which is normally difficult using conventional microscopes because of the Abbe diffraction limit, established by physicist Ernst Abbe in 1873. The limit is about 250 nanometers, which is large compared to the tiny walkers, measuring about 5 nanometers long.

As the DNA walker is exposed to laser light, the nanoparticle and nanotube flash on and off randomly. These flashes are captured as numerous fluorescing dots in thousands of imaging frames. This collection of points is then used to reconstruct the precise motion of the walker, which moves in a six-step cycle that involves cleaving portions of the RNA strand and harvesting its energy before moving on to the next strand.

Findings revealed three primary steps dominate this walking mechanism.

"So, if you can control these three steps within this walking cycle then you can really study and better control these walkers," Choi said. "You can speed them up, you can make them stop and move in different directions."

Whereas it previously would have taken 20 hours or longer to study a complete walking cycle, the new approach speeds the process to roughly one minute.

Explore further: DNA motor 'walks' along nanotube, transports tiny particle

More information: Jing Pan et al. Visible/near-infrared subdiffraction imaging reveals the stochastic nature of DNA walkers, Science Advances (2017). DOI: 10.1126/sciadv.1601600

Related Stories

Baby steps towards molecular robots

December 11, 2014

A walking molecule, so small that it cannot be observed directly with a microscope, has been recorded taking its first nanometre-sized steps.

Tiny DNA 'legs' walk with record fuel efficiency

June 30, 2016

(—For the first time, researchers have demonstrated a DNA nanomotor that can "walk" along a track with sustainable motion. The nanomotor also has the highest fuel efficiency for any type of walking nanomotor, or ...

Chemists create bipedal, autonomous DNA walker

April 2, 2009

Chemists at New York University and Harvard University have created a bipedal, autonomous DNA "walker" that can mimic a cell's transportation system. The device, which marks a step toward more complex synthetic molecular ...

'Super-resolution' microscope possible for nanostructures

April 29, 2013

( —Researchers have found a way to see synthetic nanostructures and molecules using a new type of super-resolution optical microscopy that does not require fluorescent dyes, representing a practical tool for biomedical ...

Recommended for you

Atomic-scale ping-pong

June 20, 2018

New experiments by researchers at the National Graphene Institute at the University of Manchester have shed more light on the gas flow through tiny, angstrom-sized channels with atomically flat walls.

Chameleon-inspired nanolaser changes colors

June 20, 2018

As a chameleon shifts its color from turquoise to pink to orange to green, nature's design principles are at play. Complex nano-mechanics are quietly and effortlessly working to camouflage the lizard's skin to match its environment.

Method could help boost large scale production of graphene

June 19, 2018

The measure by which any conductor is judged is how easily, and speedily, electrons can move through it. On this point, graphene is one of the most promising materials for a breathtaking array of applications. However, its ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

1 / 5 (2) Feb 10, 2017
Am i the only one who is of the opinion that experimenting with DNA and RNA is crazy?
Will we soon look like the Vidiians in Star Trek Voyager?

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.