Existence of a new quasiparticle demonstrated

February 28, 2017, Institute of Science and Technology Austria
Artist's impression of the angulon quasiparticle formed from a methane molecule in superfluid helium. Credit: IST Austria

How do molecules rotate in a solvent? Answering this question is complicated, since molecular rotation is perturbed by a very large number of surrounding atoms. For a long time, large-scale computer simulations have been the main approach to model molecule-solvent interactions. However, they are extremely time consuming and sometimes infeasible. Now, Mikhail Lemeshko from the Institute of Science and Technology Austria (IST Austria) has proven that angulons—a certain type of quasiparticle he proposed two years ago—do, in fact, form when a molecule is immersed in superfluid helium. This offers a quick and simple description for rotation of molecules in solvents.

In physics, the concept of quasiparticles is used as a technique to simplify the description of many-particle systems. Namely, instead of modeling strong interactions between trillions of individual particles, one identifies building blocks of the system that are only weakly interacting with one another. These building blocks are called quasiparticles and might consist of groups of particles. For example, to describe air bubbles rising up in water from first principles, one would need to solve an enormous set of equations describing the position and momentum of each water molecule. On the other hand, the bubbles themselves can be treated as individual particles—or quasiparticles—which drastically simplifies the description of the system. As another example, consider a running horse engulfed in a cloud of dust. One can think of it as a quasiparticle consisting of the horse itself and the dust cloud moving along with it. Understanding what is going on in terms of such a 'quasi-horse' is substantially easier compared to treating every dust grain, as well as the horse, separately in a complicated simulation.

The latter example is similar to what Mikhail Lemeshko did in his study. Instead of treating the rotating molecule and all the atoms of the surrounding material separately, he used angulons to look at the problem from a different perspective. Angulon quasiparticles, which form when a rotating object interacts with a surrounding environment, were predicted theoretically two years ago by Lemeshko and Schmidt. Until now, however, they were considered only theoretical. Lemeshko's study, which was published today in Physical Review Letters, is based on experimental data collected by several laboratories over the last two decades. All the experiments had one thing in common: Molecules of different types were observed to rotate inside tiny droplets of . As Lemeshko has shown, independent of which molecule was studied, whether heavy or light species, methane, water, carbon dioxide or ammonia, the outcome of the angulon theory was always in good agreement with the measurements. This indicates that the angulon quasiparticles do, indeed, form inside helium droplets.

"In our first study, we proposed angulons as a possibility for describing the rotation of molecules in solvents. Now, we have provided strong evidence that angulons actually exist," says Lemeshko. This substantially simplifies existing many-particle theories and could lead to applications in molecular physics, theoretical chemistry, and even biology.

A first application of the angulon theory was found by Enderalp Yakaboylu, a postdoc in Lemeshko's group. The authors predicted that even a medium that is non-polarizable can shield an immersed impurity from an external electromagnetic field. This effect, which seems to contradict intuition, is called "anomalous screening" and is caused by an exchange of angular momentum on quantum level. The discovery, which the authors published in Physical Review Letters, was made possible by describing the charged particle and the interacting surroundings as an angulon quasiparticle. Future measurements will show if the prediction can be proven experimentally.

Explore further: A novel canonical transformation provides insights into many-particle physics

More information: Mikhail Lemeshko, Quasiparticle Approach to Molecules Interacting with Quantum Solvents, Physical Review Letters (2017). DOI: 10.1103/PhysRevLett.118.095301

Related Stories

Observing the birth of quasiparticles in real time

October 6, 2016

The formation of quasiparticles, such as polarons, in a condensed-matter system usually proceeds in an extremely fast way and is very difficult to observe. In Innsbruck, Rudolf Grimm's physics research group, in collaboration ...

New paths into the world of quasiparticles

July 9, 2014

Quasiparticles can be used to explain physical phenomena in solid bodies even though they are not actual physical particles. Physicists in Innsbruck have now realized quasiparticles in a quantum system and observed quantum ...

Binding together repelling atoms

July 31, 2013

Basic chemistry tells us that a bond between atoms can form if it is energetically more favorable for the atoms to stick together than staying apart. This fundamentally requires an attractive force between the atoms. However, ...

Recommended for you

A phonon laser operating at an exceptional point

July 20, 2018

The basic quanta of light (photon) and sound (phonon) are bosonic particles that largely obey similar rules and are in general very good analogs of one another. Physicists have explored this analogy in recent experimental ...

2 comments

Adjust slider to filter visible comments by rank

Display comments: newest first

swordsman
not rated yet Feb 28, 2017
How is the angular rotation of the "particle" measured? Not likely that it is emitting radiation. If the fluid is being illuminated, the illumination can affect the measurement. Is this a Doppler measurement method? An interesting experiment, but not enough details.
Mimath224
not rated yet Feb 28, 2017
@swordsman, yes. The other point is that I'm not sure if the 'horse/dust' analogy is appropriate. It might also depend on the type of dust, electrostatic and perhaps a minute gravitational attraction to think about. The ingredients are also anything but 'pure' too whereas the experiment requires high levels of purity. I'd be more inclined to think of a shape in a wind tunnel as a moving analogy.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.