Researchers create better algorithm for simulating particles in Fermi Sea

October 27, 2015
Researchers create better algorithm for simulating particles in Fermi Sea
A single down-spin impurity surrounded by a Fermi sea of up-spin particles in two dimensions.

A North Carolina State University physicist and his German colleagues have created a new, more precise algorithm for simulating particle interactions when a single impurity is introduced into a Fermi sea. The algorithm shows that when these particles interact, the transition from quasiparticle to bound molecule in a polarized two-dimensional system is smooth. The new method may have implications for understanding the behavior of impurities in a variety of systems.

The Fermi sea describes a collection of weakly interacting identical fermions such as electrons that have been cooled to a very low temperature. No two fermions within the sea have exactly the same quantum state. The ground state of the Fermi sea in this pure form is well understood. However, what happens when an impurity - such as a particle with a different spin - is introduced? How does that one particle affect the system as a whole?

"Let's say that all the particles in the sea are up-spin particles, and we introduce one down-spin particle," says NC State physicist Dean Lee, co-author on a paper describing the work. "Does this new particle form a molecular bond with one of the up-spin particles? How does the system react?"

Lee and his colleagues, lead author Shahin Bour and Ulf-G. Meissner from Bonn University and Hans-Werner Hammer from Darmstadt University, developed a algorithm called impurity lattice Monte Carlo that samples the possible paths of the impurity in the Fermi sea. Monte Carlo methods are commonly used to simulate quantum mechanical systems. Impurity lattice Monte Carlo differs from other methods in that it treats the impurity particle explicitly, in a completely different manner from the other particles in the system.

According to the lattice results, the transition from single particle to bound molecule is smooth. "Physicists had theorized that there should be a clear critical value, or interaction strength, where the impurity would bond with another particle and become a molecule," Lee says, "but our simulations don't show that. Instead, we find that there's an interesting ambiguous state where the are interacting, but may or may not be a bound molecule. And when the transition does happen, it occurs smoothly as a function of interaction strength.

"What we're most excited about, though, are the future possibilities. We want to take the lattice into three-dimensional simulations, and introduce an to a paired superfluid to see what effects that has on the system. We hope that our method can be used to address questions relevant to cold atoms, solid state systems and neutron stars."

The research appears in Physical Review Letters.

Explore further: Expanding particles to engineer defects: Researchers find that adding an impurity can create order

More information: Shahin Bour et al. Lattice Results for Fermi Polarons in Two Dimensions , Physical Review Letters (2015). DOI: 10.1103/PhysRevLett.115.185301

Related Stories

Controlling interactions between distant qubits

July 23, 2015

A big part of the burgeoning science of quantum computation is reliably storing and processing information in the form of quantum bits, or qubits. One of the obstacles to this goal is the difficulty of preserving the fragile ...

Recommended for you

Flexible ferroelectrics bring two material worlds together

January 17, 2017

Until recently, "flexible ferroelectrics" could have been thought of as the same type of oxymoronic phrase. However, thanks to a new discovery by the U.S. Department of Energy's (DOE) Argonne National Laboratory in collaboration ...

First-ever X-ray image capture of material defect process

January 17, 2017

From blacksmiths forging iron to artisans blowing glass, humans have for centuries been changing the properties of materials to build better tools – from iron horseshoes and swords to glass jars and medicine vials.

Theory lends transparency to how glass breaks

January 16, 2017

Over time, when a metallic glass is put under stress, its atoms will shift, slide and ultimately form bands that leave the material more prone to breaking. Rice University scientists have developed new computational methods ...

A novel way to put flame retardant in a lithium ion battery

January 16, 2017

(Phys.org)—A team of researchers at Stanford University has found a novel way to introduce flame retardant into a lithium ion battery to prevent fires from occurring. In their paper published in the journal Science Advances, ...

Self-assembling particles brighten future of LED lighting

January 16, 2017

Just when lighting aficionados were in a dark place, LEDs came to the rescue. Over the past decade, LED technologies—short for light-emitting diode—have swept the lighting industry by offering features such as durability, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.