New polymer nanocomposites could improve solar cell durability

February 22, 2017, Texas A&M University
Grunlan (center) discusses the behavior of a clay solution to Ph.D. students Ryan Smith (left) and Yixuan Song. These clay solutions are used in producing clay-based nanocomposite thin films and coatings for the Sandia project.  Credit: Texas A&M University

The Polymer Nanocomposites Laboratory at Texas A&M University, directed by Dr. Jaime Grunlan, is working with scientists at the Sandia National Laboratory to reduce or eliminate arc faults and corrosion in solar cells. Corrosion in photovoltaic cells, which convert light into electricity, can damage connections and reduce or destroy the ability to generate electricity.

The specific goal of Grunlan's research with Sandia is to prevent arc faults, which are discharges of electricity that can occur when electrical connections are corroded. Initial testing suggests the thin clay-based nanocomposite coatings developed at Texas A&M could also be used as anti-corrosive layers within the cells to improve durability/lifetime. The coatings developed within Grunlan's research group are being evaluated as barriers to moisture and corrosive gases. Testing is being done at Sandia as part of the larger Durable Module Materials National Lab Consortium (DuraMat), which is seeking to benefit the photovoltaic industry.

"It's exciting to see how our long-term research in gas barrier and flame retardant coatings is being used to improve the efficiency and longevity of . We are solving complicated problems using low-cost and environmentally benign , which is an added bonus," Grunlan said.

In the release, Erik Spoerke of Sandia's Electronic, Optical and Nano Materials Department compared the development of these nanocomposite films, some of which can be 100 times thinner than a human hair, to building a house.

"It's about assembling those structures in the right way so that you can use inexpensive materials and still get the benefits you want," Spoerke said. "If you build a house, it's not just piling together the drywall and two-by-fours and shingles. You've got to use the two-by-fours to make the frame, set the drywall on the two-by-fours and assemble the shingles on the roof."

The overall goal of the research is to bring down the long-term cost of solar panels and solar technology. Being able to slow down corrosion in using inexpensive materials like clay so that they last longer and stay efficient could help facilitate faster adoptions of solar technology.

Explore further: Battling corrosion to keep solar panels humming

Related Stories

Battling corrosion to keep solar panels humming

February 2, 2017

People think of corrosion as rust on cars or oxidation that blackens silver, but it also harms critical electronics and connections in solar panels, lowering the amount of electricity produced.

Recommended for you

Atomic-scale manufacturing now a reality

May 23, 2018

Scientists at the University of Alberta have applied a machine learning technique using artificial intelligence to perfect and automate atomic-scale manufacturing, something which has never been done before. The vastly greener, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.