NASA's spots Tropical Cyclone Carlos' night-time stretch

February 10, 2017, NASA's Goddard Space Flight Center
NASA-NOAA's Suomi NPP satellite captured a night-time look at Tropical Cyclone Carlos in the Southern Indian Ocean on Feb. 9 at 21:18 UTC (4:18 p.m. EST). Credit: NOAA/NASA Goddard MODIS Rapid Response Team

NASA-NOAA's Suomi NPP satellite captured a night-time image of Tropical Cyclone Carlos using infrared light that showed the storm was being stretched out. Carlos is being adversely affected by the Westerlies.

The Westerlies are a semi-permanent belt of prevailing in the mid-latitudes that are found in both the temperate zones of the northern and southern hemispheres.

On February 9 the Visible Infrared Imaging Radiometer Suite (VIIRS) instrument aboard the NASA-NOAA Suomi NPP satellite captured an infrared image of Tropical Cyclone Carlos in the Southern Indian Ocean. Infrared imagery detects heat. The VIIRS image showed the thunderstorms around the center of circulation has become more elongated from east to west. Carlos has now moved further into the Westerlies, which have caused the elongation. The winds affecting Carlos are battering the tropical cyclone at a speed between 34.5 mph (30 knots /55.5 kph) and 46 mph (40 knots/74 kph).

On Feb. 10 at 1500 UTC (10 a.m. EST) Tropical Storm Carlos' were near 51.7 mph (45 knots/83.3 kph). Carlos' winds peaked on February 9. The Joint Typhoon Warning Center (JTWC) expects Carlos to continue weakening. Carlos was centered near 28.5 degrees south latitude and 60.8 degrees east longitude, about 502 nautical miles southeast of Port Louis, Mauritius. Carlos was moving to the southeast at 17 mph (15 knots/28 kph).

JTWC forecasters expect Carlos to rapidly erode, then dissipate by Sunday, February 12 because of increasing and movement over cooler sea surface temperatures.

Explore further: NASA sees Tropical Storm Carlos west of La Reunion Island

Related Stories

Recommended for you

New study brings Antarctic ice loss into sharper focus

February 21, 2018

A NASA study based on an innovative technique for crunching torrents of satellite data provides the clearest picture yet of changes in Antarctic ice flow into the ocean. The findings confirm accelerating ice losses from the ...

'Chameleon' ocean bacteria can shift their colors

February 21, 2018

Cyanobacteria - which propel the ocean engine and help sustain marine life - can shift their colour like chameleons to match different coloured light across the world's seas, according to research by an international collaboration ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.