Lowest-frequency accreting millisecond X-ray pulsar found

February 22, 2017 by Tomasz Nowakowski, Phys.org report
Light curve of IGR J17062−6143 from RXTE PCA observations obtained on 2008 May 3. Data are the summed counting rates in 1 s bins in the 2 - 12 keV band from PCU 0 and 2 (0-4 numbering scheme). The red histogram shows the background estimated from pcabackest. Time zero corresponds to 12:58:39.866 UTC on the above date. Credit: Strohmayer et al., 2017.

(Phys.org)—Astronomers have found the lowest-frequency accreting millisecond X-ray pulsar in the X-ray source known as IGR J17062−6143. By analyzing the data provided by the Rossi X-ray Timing Explorer (RXTE) spacecraft, the researchers detected 163.65 Hz X-ray pulsations from this source. The findings were presented Feb. 17 in a paper published on arXiv.org.

IGR J17062−6143 is an accreting neutron star binary, first observed during an outburst in 2006. Two years later, this object was observed by the RXTE satellite, which acquired important data about its activity.

The data provided by RXTE was recently analyzed by Tod Strohmayer and Laurens Keek of NASA's Goddard Space Flight Center in Greenbelt, Maryland, in order to find pulsations of this source. They extracted light curves, spectra, and an estimate of the background spectrum during the observation. The available data allowed them to gather compelling evidence indicating that IGR J17062−6143 harbors an X-ray pulsar.

"We present the discovery of 163.65 Hz X-ray pulsations from IGR J17062−6143 in the only observation obtained from the source with the Rossi X-ray Timing Explorer," the paper reads.

The pulsations were detected in the 2.0 to 12 keV band. The team searched for pulsations in the frequency range from 10 to 2048 Hz and noticed a strong peak near 163.65 Hz.

The discovery makes IGR J17062−6143 the lowest-frequency accreting millisecond X-ray pulsar known to date. All other accreting millisecond X-ray pulsars have spin frequency over 182 Hz.

Moreover, the researchers found that the pulse frequency varies with time in a manner consistent with of the neutron star. This conclusion was drawn after dynamic power spectra were computed in order to determine if any secular variations in the pulsation frequency could be produced by orbital motion of the neutron star.

The team also tried to determine the orbital period of IGR J17062−6143. However, due to the short observation interval, they were not able to precisely calculate it, but only estimated that it should be no shorter than 17 minutes.

"We can find acceptable circular orbits with periods longward of about 20 minutes, however, periods shorter than this are disfavored, and we determined a 90 percent confidence lower limit on the orbital period of 17 minutes," the researchers wrote in the paper.

Determining the orbital period of this pulsar could be essential for understanding more clearly its accretion geometry. It could also help reveal the composition of the accreted material. That is why the team calls for further studies of the orbital period of IGR J17062−6143.

"As we have described, the RXTE/PCA observation was too short to accurately determine the ; therefore, future timing observations are needed, for example, with the Neutron Star Interior Composition Explorer (NICER) which is scheduled for launch in 2017," the scientists concluded.

NICER is planned to be attached to the International Space Station, where it will carry out rotation-resolved spectroscopy of the thermal and non-thermal emissions of in the soft (0.2 to 12 keV) X-ray band with unprecedented sensitivity.

Explore further: New accreting millisecond X-ray pulsar discovered

More information: IGR J17062-6143 is an Accreting Millisecond X-ray Pulsar, arXiv:1702.05449 [astro-ph.HE] arxiv.org/abs/1702.05449

We present the discovery of 163.65 Hz X-ray pulsations from IGR J17062-6143 in the only observation obtained from the source with the Rossi X-ray Timing Explorer. This detection makes IGR J17062-6143 the lowest-frequency accreting millisecond X-ray pulsar presently known. The pulsations are detected in the 2 - 12 keV band with an overall significance of 4.3 sigma, and an observed pulsed amplitude of 5.54 +- 0.67 % (in this band). Both dynamic power spectral and coherent phase timing analysis indicate that the pulsation frequency is decreasing during the 1.2 ks observation in a manner consistent with orbital motion of the neutron star. Because the observation interval is short, we cannot precisely measure the orbital period; however, periods shorter than 17 minutes are excluded at 90 % confidence. For the range of acceptable circular orbits the inferred binary mass function substantially overlaps the observed range for the AMXP population as a whole.

Related Stories

New accreting millisecond X-ray pulsar discovered

November 15, 2016

(Phys.org)—A new accreting millisecond X-ray pulsar (AMXP) has been found in one of our galaxy's most massive clusters, NGC 2808. The newly detected AMXP received designation MAXI J0911-655 and is part of an ultra-compact ...

Pulsar discovered in an ultraluminous X-ray source

September 26, 2016

(Phys.org)—A team of European astronomers has discovered a new pulsar in a variable ultraluminous X-ray source (ULX) known as NGC 7793 P13. The newly found object is the third ultraluminous X-ray pulsar detected so far, ...

Millisecond pulsars

October 3, 2016

When a star with a mass of roughly ten solar masses finishes its life, it explodes as a supernova, leaving behind a neutron star as remnant "ash." Neutron stars have masses of one-to-several suns but they are tiny in diameter, ...

Eclipsing pulsar promises clues to crushed matter

August 17, 2010

Astronomers using NASA's Rossi X-ray Timing Explorer (RXTE) have found the first fast X-ray pulsar to be eclipsed by its companion star. Further studies of this unique stellar system will shed light on some of the most compressed ...

Astronomers find six new millisecond pulsars

January 26, 2016

(Phys.org)—NASA's Fermi Gamma-ray Space Telescope has once again proven that it is an excellent tool to search for rotating neutron stars emitting beams of electromagnetic radiation, known as pulsars. A team of astronomers, ...

Recommended for you

NASA's new mini satellite will study Milky Way's halo

July 18, 2018

Astronomers keep coming up short when they survey "normal" matter, the material that makes up galaxies, stars and planets. A new NASA-sponsored CubeSat mission called HaloSat, deployed from the International Space Station ...

Supersharp images from new VLT adaptive optics

July 18, 2018

ESO's Very Large Telescope (VLT) has achieved first light with a new adaptive optics mode called laser tomography—and has captured remarkably sharp test images of the planet Neptune and other objects. The MUSE instrument ...

Jupiter's moon count reaches 79, including tiny 'oddball'

July 17, 2018

Twelve new moons orbiting Jupiter have been found—11 "normal" outer moons, and one that they're calling an "oddball." This brings Jupiter's total number of known moons to a whopping 79—the most of any planet in our Solar ...

Astronomers find a famous exoplanet's doppelgänger

July 17, 2018

When it comes to extrasolar planets, appearances can be deceiving. Astronomers have imaged a new planet, and it appears nearly identical to one of the best studied gas-giant planets. But this doppelgänger differs in one ...

Dawn mission to gather more data in home stretch

July 17, 2018

As NASA's Dawn spacecraft prepares to wrap up its groundbreaking 11-year mission, which has included two successful extended missions at Ceres, it will continue to explore—collecting images and other data.


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.