Liquid metal nano printing set to revolutionize electronics

February 17, 2017

A new technique using liquid metals to create integrated circuits that are just atoms thick could lead to the next big advance for electronics.

The process opens the way for the production of large wafers around 1.5 nanometres in depth (a sheet of paper, by comparison, is 100,000nm thick).

Other techniques have proven unreliable in terms of quality, difficult to scale up and function only at very high temperatures—550 degrees or more.

Distinguished Professor Kourosh Kalantar-zadeh, from the School of Engineering at RMIT University in Melbourne, Australia, led the project, which also included colleagues from RMIT and researchers from CSIRO, Monash University, North Carolina State University and the University of California.

He said the electronics industry had hit a barrier.

"The fundamental technology of car engines has not progressed since 1920 and now the same is happening to electronics. Mobile phones and computers are no more powerful than five years ago.

"That is why this new 2D printing technique is so important—creating many layers of incredibly thin electronic chips on the same surface dramatically increases processing power and reduces costs.

"It will allow for the next revolution in electronics."

Benjamin Carey, a researcher with RMIT and the CSIRO, said creating electronic wafers just atoms thick could overcome the limitations of current chip production.

It could also produce materials that were extremely bendable, paving the way for flexible .

"However, none of the current technologies are able to create homogenous surfaces of atomically thin semiconductors on large surface areas that are useful for the industrial scale fabrication of chips.

"Our solution is to use the metals gallium and indium, which have a low melting point.

"These metals produce an atomically thin layer of oxide on their surface that naturally protects them. It is this thin oxide which we use in our fabrication method.

"By rolling the liquid metal, the oxide layer can be transferred on to an electronic wafer, which is then sulphurised. The surface of the wafer can be pre-treated to form individual transistors.

"We have used this novel method to create transistors and photo-detectors of very high gain and very high fabrication reliability in large scale."

Explore further: Towards the T-1000: Liquid metals propel future electronics

More information: "Wafer Scale Two Dimensional Semiconductors from Printed Oxide Skin of Liquid Metals", Nature Communications, DOI: 10.1038/NCOMMS14482

Related Stories

Scientists grow atomically thin transistors and circuits

July 11, 2016

In an advance that helps pave the way for next-generation electronics and computing technologies—and possibly paper-thin gadgets —scientists with the U.S. Department of Energy's Lawrence Berkeley National Laboratory (Berkeley ...

Research brings unbreakable phones one step closer

September 16, 2013

Breakthrough research at RMIT University is advancing transparent bendable electronics, bringing science fiction gadgets – such as unbreakable rubber-like phones, rollable tablets and even functional clothing – closer ...

Recommended for you

Breakthrough in ultra-fast data processing at nanoscale

October 20, 2017

A research team from the National University of Singapore has recently invented a novel "converter" that can harness the speed and small size of plasmons for high frequency data processing and transmission in nanoelectronics.

Art advancing science at the nanoscale

October 18, 2017

Like many other scientists, Don Ingber, M.D., Ph.D., the Founding Director of the Wyss Institute, is concerned that non-scientists have become skeptical and even fearful of his field at a time when technology can offer solutions ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.