Compound from deep-water marine sponge could provide antibacterial solutions for MRSA

February 8, 2017, Florida Atlantic University
A compound extracted from a deep-water marine sponge collected near the Bahamas is showing potent antibacterial activity against the drug resistant "super bug" MRSA. Credit: Florida Atlantic University's Harbor Branch Oceanographic Institute

A compound extracted from a deep-water marine sponge collected near the Bahamas is showing potent antibacterial activity against the drug resistant bacteria methicillin-resistant Staphylococcus aureus (MRSA). Also called the "super bug," MRSA bacteria are resistant to all beta-lactam antibiotics such as methicillin, penicillin, oxacillin and amoxicillin and can be fatal. According to the Centers for Disease Control and Prevention, more than 80,000 invasive MRSA infections and 11,285 related deaths occur every year. Results of the study, led by researchers at Florida Atlantic University's Harbor Branch Oceanographic Institute, are published in the current issue of the journal Marine Drugs.

Researchers have been able to demonstrate the isolation, structure elucidation and biological activity of a new indole (basis of many biologically active substances) alkaloid isolated from a marine sponge. They have named the antibiotic compound "dragmacidin G" and shown that it has a broad spectrum of biological activity including inhibition of MRSA as well as a panel of pancreatic cancer cell lines.

"Sponges of the genus Spongosorites, have been a source of a number of biologically active bis-indole alkaloids that are reported to have a variety of activities including antibacterial, antiviral, antifungal, antiplasmodial, cytotoxic as well as anti-inflammatory activities," said Amy Wright, Ph.D., lead author and a research professor at FAU's Harbor Branch who directs the Institute's drug discovery program. "We found substantial antibacterial activity for dragmacidin G. It is greater than 10-fold more potent than other members of the bis-indole alkaloids while retaining selectivity towards bacterial over mammalian cells."

The deep-water marine sponge was collected using the Johnson Sea Link submarine. For years, scientists at FAU's Harbor Branch have been collecting unusual marine organisms -- many of them from deep-water habitats -- that are the source of novel natural products. The majority of samples come primarily from around the Atlantic and Caribbean; others have come from the Galapagos, western Pacific, Mediterranean, Indo-Pacific, Western Africa and the Bering Sea. Credit: Florida Atlantic University's Harbor Branch Oceanographic Institute

For years, scientists at FAU's Harbor Branch have been collecting unusual marine organisms—many of them from deep-water habitats—that are the source of novel . The majority of samples come primarily from around the Atlantic and Caribbean; others have come from the Galapagos, western Pacific, Mediterranean, Indo-Pacific, Western Africa and the Bering Sea. FAU Harbor Branch's drug discovery program looks for treatments for pancreatic cancer and infectious diseases, and their scientists also have collaborations with other scientists working on other forms of cancer, malaria, tuberculosis, neurodegenerative disease and inflammation.

"The primary goal of our marine biomedical and biotechnology program is to discover marine natural products with utility as medicines or as tools to better allow us to understand disease processes," said Wright.

Over the past 10 years, the team has developed a library of materials (the FAU Harbor Branch-enriched fraction library) that are tested against a variety of diseases both at FAU's Harbor Branch and in partner laboratories. Once an activity is discovered, the team uses bioassay-directed fractionation to purify the bioactive natural products. The structures of these new compounds are determined through spectroscopic means with an emphasis on the use of nuclear magnetic resonance spectroscopy. The researchers can then define how the compounds work using a wide array of methods such as small molecule immunochemical (affinity) chromatography or in this instance developing bacteria that are resistant to dragmacidin G and then defining what genetic changes are present in the resistant bacteria.

For this study, fractions from the FAU Harbor Branch-enriched fraction library were screened in a number of assays including growth inhibition of the drug-resistant human pathogenic bacteria MRSA. Wright also worked with researchers from the University of Central Florida to test the growth inhibition of the causative agent for tuberculosis and the parasite Plasmodium falciparum, one of the causes of malaria in humans. The highly enriched fraction containing the new compound showed activity in all three assays and was further purified to obtain pure dragmacidin G, which enabled its structure elucidation and biological testing. The researchers are planning further studies based on these preliminary results.

For years, scientists at FAU's Harbor Branch have been collecting unusual marine organisms -- many of them from deep-water habitats -- that are the source of novel natural products. Credit: Florida Atlantic University's Harbor Branch Oceanographic Institute

Explore further: Natural compound from a deep-water marine sponge found to reduce pancreatic tumor size

Related Stories

Know thy enemy: Kill MRSA with tailored chemistry

December 22, 2016

University of Connecticut medicinal chemists have developed experimental antibiotics that kill MRSA, a common and often deadly bacteria that causes skin, lung, and heart infections. The success is due to their strategy, which ...

Chemists discover new class of antibiotics

March 7, 2014

(Phys.org) —A team of University of Notre Dame researchers led by Mayland Chang and Shahriar Mobashery have discovered a new class of antibiotics to fight bacteria such as methicillin-resistant Staphylococcus aureus (MRSA) ...

Recommended for you

Research offers new insights into malaria parasite

May 18, 2018

A team of researchers led by a University of California, Riverside, scientist has found that various stages of the development of human malaria parasites, including stages involved in malaria transmission, are linked to epigenetic ...

What we've learned about the nucleolus since you left school

May 17, 2018

The size of a cell's nucleolus may reveal how long that cell, or even the organism that cell belongs to, will live. Over the past few years, researchers have been piecing together an unexpected link between aging and an organelle ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.