Closer look at atomic motion in molecules may benefit biotech researchers

February 15, 2017
A new technique enables scientists to break down the collective atomic motion in a molecule into elementary components. Credit: KTH Royal Institute of Technology

Every molecule holds a complex landscape of moving atoms – and the ability to single out and examine individual nuclear vibrations may unlock to the secret to predicting and controlling chemical reactions. Now a new method, developed by researchers in Sweden, enables biotech researchers to do just that.

The new method offers unprecedented detail in measuring molecular motion and – enabling better control and understanding of in the field of biotechnology research.

The technique, which was recently published in Nature Communications, uses X-ray scattering to measure the specific movements of atoms in a molecule with extreme energy resolution.

"The idea is based on exciting a molecule to a high-energy, localized state," says Victor Kimberg, a researcher in the department of Theoretical Chemistry and Biology, at KTH Royal Institute of Technology in Stockholm. The X-ray radiation that it emits then scans the of the molecule with a level of precision that Kimberg compares to observing the movements of individual insects from on top of a mountain.

Every molecule has its own energy "landscape", or the full multidimensional spectrum of motion that atoms undergo when the molecule is energized. These motions include bending and stretching of bonds. Expressed in geometric terms, the relationships of atoms to one another in a single molecule are among the key things scientists need to know in order to determine a molecule's potential energy surface (PES) – an important value in the study of molecular structures, properties and reactivity.

"The PES is useful for processes such as catalysis and photochemistry," Kimberg says.

For the first time, the technique enables scientists to break down the collective in a molecule into elementary components, he says.

"We can now go further than examining the collective multidimensional atomic motion in a molecule, and look at specific vibrations along selected reaction coordinates," he says. "We are not aware of any other way to do this, so it looks like our idea is new."

Typically when a molecule is excited, the only measurements available show all atomic motion simultaneously. The full PES landscape is complex with all types of vibrations. Kimberg says that with the method they propose, x-ray photon energy can be tuned to excite vibrations of a singled-out type of nuclear motion – which he says can serve as a basis for developing methods of reaction control.

"We show clearly that tuning the x-ray photon energy in resonance with one core-excited state induces only symmetric stretching motion; while tuning to another core-excited state excites exclusively the bending motion," he says.

The measurements were conducted at the Swiss Light Source (SLS) synchrotron laboratory in Zurich, in collaboration with the KTH group, comprised of Kimberg, Faris Gel'mukhanov and Hans Ågren, who were responsible for the underlying theory and simulations.

Explore further: High-energy electrons synced to ultrafast laser pulse to probe how vibrational states of atoms change in time

More information: Rafael C. Couto et al. Selective gating to vibrational modes through resonant X-ray scattering, Nature Communications (2017). DOI: 10.1038/ncomms14165

Related Stories

Recommended for you

Wood filter removes toxic dye from water

April 24, 2017

Engineers at the University of Maryland have developed a new use for wood: to filter water. Liangbing Hu of the Energy Research Center and his colleagues added nanoparticles to wood, then used it to filter toxic dyes from ...

Tiny 'cages' could keep vaccines safe at high temperatures

April 24, 2017

Vaccines and antibodies could be transported and stored without refrigeration by capturing them in tiny silica 'cages', a discovery which could make getting vital medicines to remote or dangerous places much easier, cheaper ...

Solving the separase–securin complex

April 24, 2017

The structure of an important protein complex that regulates the metaphase-to-anaphase transition during cell cycle progression has been solved using cryo-electron microscopy (cryo-EM) at Diamond Light Source. The structural ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.