New method to diagnose cancer

January 18, 2017, National Research Nuclear University
Credit: National Research Nuclear University

An international group of scientists has created a new approach to the diagnostics of breast cancer with the help of nanoparticles of porous silicone.

A relatively new term for modern science, nanoteranostics is a conjunction of nanoscale diagnostics and therapeutic methods. One of the prospective methods of nanoteranostics is using nanoparticles of porous silicone for the detection of damaged cells.

Silicone nanoparticles (SiNPs) have a lot of advantages in comparison with other nano-sized particles used for tumour detection and treatment. They are biocompatible, with low cytotoxicity and genotoxicity. SiNPs are biodegradable, which is essential for their complete removal from living cells and tissues. Furthermore, they exhibit useful properties for brachi- and photodynamic therapy on .

Porous silicon nanoparticles could be used as a solute and nano-drug delivery container. These unique properties have pushed scientists to conduct extensive research of these nanoparticles and the prospects for their use in theranostics.

In the laboratory, they found that complete removal of the porous silicon from the body is possible in a few weeks without any signs of toxicity. However, the speed of SiNPs degradation depends on many factors, including particle size, porosity and pH. Therefore, this period can vary from a few days to several months.

Typically, the time length of the biodegradation is determined by its concentration in the blood plasma. Alternatively, doctors can use histological methods or analysis of the silicon content in the tissues. However, these assay methods are inaccurate, slow and very labor intensive. New methods for monitoring the biodegradation of nanoparticles are therefore required.

Scientists from MEPhI, together with colleagues, have described a new approach for the in vitro study of intracellular behavior of SiNPs, localization and biodegradation in cells by micro-Raman spectroscopy. The research results were published in the prestigious scientific journal Nanomedicine: Nanotechnology, Biology and Medicine.

"Thanks to the combined efforts of specialists representing a new branch of science, nanoteranostics, we are able to optimize cancer treatment outcomes and other serious diseases," said Professor of MEPhI Laboratory of bionanofotonics Viktor Tymoshenko.

New methods pave the way for the destruction of cancer cells and tumors with subcellular accuracy, and nanoparticles used in this process will be removed from the body after the procedure without any undesired secondary effects. "Nanoteranostics allows our patients to avoid the effects of chemotherapy and radiotherapy, whose harm is much greater than the disease itself," said the expert.

According to the scientist, nanoteranostics is the future, because it combines non-invasive diagnosis and therapy.

Explore further: Scientists have created nanoparticles that cure cancer harmlessly

Related Stories

Eco-friendly production of silicon nanowires

October 19, 2016

Physicists from the Lomonosov Moscow State University have worked out a new and more eco-friendly method of obtaining silicon nanowires that replaces hydrofluoric acid (HF) with ammonium fluoride (NH4F).

Recommended for you

Elephant and cow manure for making paper sustainably

March 21, 2018

It's likely not the first thing you think of when you see elephant dung, but this material turns out to be an excellent source of cellulose for paper manufacturing in countries where trees are scarce, scientists report. And ...

Smallest ever sieve separates atoms

March 20, 2018

Researchers at The University of Manchester have discovered that the naturally occurring gaps between individual layers of two-dimensional materials can be used as a sieve to separate different atoms.

Quantum bits in two dimensions

March 20, 2018

Two novel materials, each composed of a single atomic layer and the tip of a scanning tunneling microscope, are the ingredients for a novel kind of quantum dot. These extremely small nanostructures allow delicate control ...

Rubbery carbon aerogels greatly expand applications

March 19, 2018

Researchers have designed carbon aerogels that can be reversibly stretched to more than three times their original length, displaying elasticity similar to that of a rubber band. By adding reversible stretchability to aerogels' ...

Scientists have a new way to gauge the growth of nanowires

March 19, 2018

In a new study, researchers from the U.S. Department of Energy's (DOE) Argonne and Brookhaven National Laboratories observed the formation of two kinds of defects in individual nanowires, which are smaller in diameter than ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.