Analysis of developing bat fetuses suggests common ancestor developed echolocation

January 10, 2017 by Bob Yirka weblog
Credit: CC0 Public Domain

(Phys.org)—A team of researchers from several institutions in China and one in Ireland has found evidence in the ears of developing bat fetuses that suggests all bats evolved from a common ancestor that had developed echolocation. In their paper published in the journal Nature Ecology & Evolution, the researchers outline their study and results and explain why they believe they have found evidence of some bats losing their echolocation abilities. M. Brock Fenton and John Ratcliffe with Western University and the University of Toronto respectively offer a News & Views piece in the same journal issue on the work done by the team and offer opinions regarding the results.

As most are aware, many have the ability to emit sounds and to hear those sounds echoed back as a means of hunting and navigation, i.e., echolocation. Less well known is that some bats, such as , do not have this ability. This difference between has caused scientists to wonder if the two evolved separately or if they have a common ancestor that had echolocation abilities. To find the answer, some researchers have sought fossil evidence while others have looked to gene histories—neither approach has solved the puzzle. In this new effort, the researchers took a different approach, studying the development of bats to see if differences could be discerned.

The study involved using X-ray microradiography to study developing bat fetuses, specifically the workings of their inner ears. Adult bats that have echolocation abilities have large cochlea; others have cochlea that are no larger than those of other mammals relative to their body size. But the researchers wondered what happens as the bats develop. In studying the X-rays, the researchers found that bats from two species that do not develop echolocation developed larger-than-normal cochlea during their early stages of development—similar in size to the cochlea of several species of bats that do develop echolocation.

The team compared what they had found with developing cochlea in other non-bat mammal species as well, and found that the cochlea grew larger in all of the developing bat fetuses than it did in all of the non-bat species they looked at. This, the researchers suggest, offers evidence that all bats have a that developed echolocation—those modern without , they claim, simply lost it over time.

Explore further: Blind as bats: Echolocation study reveals key evolutionary trade-offs with other senses

More information: Zhe Wang et al. Prenatal development supports a single origin of laryngeal echolocation in bats, Nature Ecology & Evolution (2017). DOI: 10.1038/s41559-016-0021

Abstract
Bat laryngeal echolocation is considered as one of the most complex and diverse modes of auditory sensory perception in animals and its evolutionary history has been the cause of many scientific controversies in the past two decades. To date, the majority of scientific evidence supports that bats (Chiroptera) are divided into two subordinal groups: Yinpterochiroptera, containing the laryngeal echolocating superfamily Rhinolophidae as sister taxa to the non-laryngeal echolocating family Pteropodidae; and Yangochiroptera, containing all other laryngeal echolocating lineages. This topology has led to an unanswered question in mammalian biology: was laryngeal echolocation lost in the ancestral pteropodids or gained convergently in the echolocating bat lineages? To date, there is insufficient and conflicting evidence from fossil, genomic, morphological and phylogenomic data to resolve this question. We detail an ontogenetic study of fetal cochlear development from seven species of bats and five outgroup mammals and show that in early fetal development, all bats including the non-laryngeal echolocating pteropodids have a similarly large cochlea typically associated with laryngeal echolocation abilities. The subsequent cochlear growth rate in the pteropodids is the slowest of all mammals and leads to the pteropodids and the non-echolocating lineages eventually sharing a similar cochlear morphospace as adults. The results suggest that pteropodids maintain a vestigial developmental stage indicative of past echolocation capabilities and thus support a single origin of laryngeal echolocation in bats.

Related Stories

Bats avoid collisions by calling less in a crowd

January 4, 2017

In the warm summer months, bats go about their business each night, flying and gobbling up insects (a benefit to us). Using echolocation (making calls and listening for returning echoes to figure out where objects are) they ...

How bats took over the night

December 12, 2013

Blessed with the power of echolocation—reflected sound—bats rule the night skies. There are more than 1,000 species of these echolocating night creatures, compared with just 80 species of non-echolocating nocturnal birds. ...

Recommended for you

These shrews have heads that shrink with the season

October 23, 2017

If any part of the body would seem ill equipped to shrink, it would probably be the head and skull. And, yet, researchers reporting in Current Biology on October 23 have found that the skulls of red-toothed shrews do shrink ...

Single-molecule dissection of developmental gene control

October 23, 2017

Scientists at EPFL and Max Plank have made significant discoveries on how developmental genes are controlled by the methyltransferase enzyme PRC2. The study is published in Nature Structural & Molecular Biology.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.