Studies lead to use of melanin as material for bioelectronic devices

December 20, 2016, FAPESP

Bioelectronics, sometimes called the next medical frontier, is a research field that combines electronics and biology to develop miniaturized implantable devices capable of altering and controlling electrical signals in the human body. Large corporations are increasingly interested: a joint venture in the field has recently been announced by Alphabet, Google's parent company, and pharmaceutical giant GlaxoSmithKline (GSK).

One of the challenges that scientists face in developing bioelectronic devices is identifying and finding ways to use materials that conduct not only electrons but also ions, as most communication and other processes in the human organism use ionic biosignals (e.g., neurotransmitters). In addition, the materials must be biocompatible.

Resolving this challenge is one of the motivations for researchers at São Paulo State University's School of Sciences (FC-UNESP) at Bauru in Brazil. They have succeeded in developing a novel route to more rapidly synthesize and to enable the use of melanin, a polymeric compound that pigments the skin, eyes and hair of mammals and is considered one of the most promising materials for use in miniaturized such as biosensors.

"All the materials that have been tested to date for applications in bioelectronics are entirely synthetic," said Carlos Frederico de Oliveira Graeff, a professor at UNESP Bauru and principal investigator for the project.

"One of the great advantages of melanin is that it's a totally natural compound and biocompatible with the : hence its potential use in electronic devices that interface with brain neurons, for example."

According to Graeff, the challenges of using melanin as a material for the development of bioelectronic devices include the fact that like other carbon-based materials, such as graphene, melanin is not easily dispersible in an aqueous medium, a characteristic that hinders its application in thin-film production.

Furthermore, the conventional process for synthesizing melanin is complex: several steps are hard to control, it can last up to 56 days, and it can result in disorderly structures.

In a series of studies performed in recent years at the Center for Research and Development of Functional Materials (CDFM), where Graeff is a leading researcher and which is one of the Research, Innovation and Dissemination Centers (RIDCs) funded by FAPESP, he and his collaborators managed to obtain biosynthetic melanin with good dispersion in water and a strong resemblance to natural melanin using a novel synthesis route.

The process developed by the group at CDMF takes only a few hours and is based on changes in parameters such as temperature and the application of oxygen pressure to promote oxidation of the material.

By applying oxygen pressure, the researchers were able to increase the density of carboxyl groups, which are organic functional groups consisting of a carbon atom double bonded to an oxygen atom and single bonded to a hydroxyl group (oxygen + hydrogen). This enhances solubility and facilitates the suspension of biosynthetic melanin in water.

"The production of thin films of melanin with high homogeneity and quality is made far easier by these characteristics," Graeff said.

By increasing the density of , the researchers were also able to make biosynthetic melanin more similar to the biological compound.

In living organisms, an enzyme that participates in the synthesis of melanin facilitates the production of carboxylic acids. The new melanin synthesis route enabled the researchers to mimic the role of this enzyme chemically while increasing carboxyl group density.

"We've succeeded in obtaining a material that's very close to biological by chemical synthesis and in producing high-quality film for use in bioelectronic devices," Graeff said.

Through collaboration with colleagues at research institutions in Canada, the Brazilian researchers have begun using the material in a series of applications, including electrical contacts, pH sensors and photovoltaic cells.

More recently, they have embarked on an attempt to develop a transistor, a semiconductor device used to amplify or switch electronic signals and electrical power.

"Above all, we aim to produce transistors precisely in order to enhance this coupling of electronics with biological systems," Graeff said.

Explore further: Skin pigment could help strengthen foams and fabrics

Related Stories

Skin pigment could help strengthen foams and fabrics

November 9, 2016

Melanin is the natural molecule in animals' skin, hair and the iris of eyes that gives them color and helps protect them from ultraviolet light. Someday soon, the pigment could be found in unexpected places such as sofa cushions ...

Melanin considered for bio-friendly electronics

June 27, 2012

(Phys.org) -- Melanin – the pigment that colours skin, eyes and hair – could soon be the face of a new generation of biologically friendly electronic devices used in applications such as medical sensors and tissue ...

Research team lays bare melanin's DNA guarding mechanism

December 7, 2016

With a little help from chickens and video cameras, scientists have captured live the moment when skin gets darker. In a study appearing in Scientific Reports, a Japanese team has filmed and demystified the process by which ...

Researchers discover melanin could make for great batteries

May 17, 2016

Melanin is best known as the pigment that dictates our skin tones, but it is found just about everywhere—in our brains, in our hair. It is even found in cuttlefish. But as abundant as melanin is, its exact macromolecular ...

Melanin's 'trick' for maintaining radioprotection studied

August 23, 2011

Sunbathers have long known that melanin in their skin cells provides protection from the damage caused by visible and ultraviolet light. More recent studies have shown that melanin, which is produced by multitudes of the ...

Recommended for you

When more women make decisions, the environment wins

March 21, 2019

When more women are involved in group decisions about land management, the group conserves more—particularly when offered financial incentives to do so, according to a new University of Colorado Boulder study published ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.